Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 14(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38138401

ABSTRACT

Zr-based bulk metallic glasses (BMGs) have many unique properties. Due to their excellent performance and manufacturing process, they have become a research focus in the material science community. Electrolyte Jet Machining (EJM) is a non-contact electrochemical processing method with high surface integrity and high material removal rate (MRR). In this research, the sub-millimeter channels fabricated by EJM on Zr-based BMGs have been studied to explore the dissolution mechanisms and surface integrity under different scanning rates and voltages. The results show that, with other machining parameters holding constant, an increase in voltage leads to a substantial enhancement in both the depth and width of the channels machined on Zr-based BMGs. Notably, the influence of voltage on the depth of the channels is particularly pronounced. Additionally, an escalation in scanning rate correlates with a decrease in channel depth, with minimal variation in channel width. This study indicates that alcohol-based EJM is an effective method to fabricate sub-millimeter channels and modulate structures on Zr-based BMGs.

2.
Ultrasonics ; 132: 106982, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36913829

ABSTRACT

In this paper, the formation of theoretical error is presented to investigate the acoustic source localization (ASL) error that can be expected from traditional L-shaped, cross-shaped, square-shaped, and modified square-shaped sensor cluster arrangements. The response surface model based on the optimal Latin hypercube design is developed to theoretically study the effects of sensor placement parameters on the error evaluation index of root mean squared relative error (RMSRE) for the four techniques. The ASL results from the four techniques with the optimal placement parameters are analyzed theoretically. The relevant experiments are conducted for verifying the above theoretical research. The results show that the theoretical error, formed by the difference between the true and the predicted wave propagation directions is related to arrangement of sensors. The results also show that the sensor spacing and the cluster spacing are the two parameters that affect the ASL error most. Between these two parameters the sensor spacing has the stronger influence. The RMSRE increases with an increasing sensor spacing and a decreasing cluster spacing. Meanwhile, the interaction effect of placement parameters should be also emphasized, especially that between the sensor spacing and the cluster spacing for the L-shaped sensor cluster-based technique. Among the four cluster-based techniques, the newly modified square-shaped sensor cluster-based technique shows the smallest RMSRE and not the largest number of sensors. This research on error generation and analysis will provide guidance for the optimal sensor arrangements in cluster-based techniques.

3.
Opt Express ; 30(11): 17999-18017, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221609

ABSTRACT

Based on the fracture mechanics and grinding kinematics, a theoretical model is developed to determine various subsurface damage (SSD) parameters and roughness Rz of the ground brittle material with consideration of the material removal mode and spring back. Based on the image processing, a digital method is proposed to extract various SSD parameters from the cross-section micrograph of the ground sample. To verify the model and method, many fused silica samples are ground under different processing parameters, and their SSD depth and roughness Rz are measured. The research results show the average SSD depth (SSDa) can be expressed as SSDa = χ1Rz4/3 + χ2Rz (χ1 and χ2 are coefficients). The SSDa is closer to half of the maximum SSD depth (SSDm) as the wheel speed decreases or the grinding depth, feed speed, or abrasive diameter increases. The SSD length or density basically increases linearly with the increase of the SSDm. The digital method is reliable with a largest relative error of 6.65% in SSD depth, extraction speed of about 1.63s per micrograph, and good robustness to the micrograph size and small-scale residue interference. The research will contribute to the evaluation of SSDs and the optimization of the grinding process of fused silica.

4.
Micromachines (Basel) ; 13(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36295919

ABSTRACT

On the demand of low-cost, lightweight, miniaturized, and integrated optical systems, precision lenslet arrays are widely used. Diamond turning is often used to fabricate lenslet arrays directly or molds that are used to mold lenslet arrays. In this paper, mainly by real-time monitoring position following error for slow tool servo, different fabrication parameters are quantitatively studied and optimized for actual fabrication, then by actual fabrication validation, uniform and high-fidelity surface topography across the actual whole lenslet array is achieved. The evaluated fabrication parameters include sampling strategy, inverse time feed, arc-length, etc. The study provides a quick, effective, and detailed reference for both convex and concave lenslet array cutting parameter selection. At the end, a smooth zonal machining strategy toolpath is demonstrated for fabricating concave lenslet arrays.

5.
Ultrasonics ; 124: 106770, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35643054

ABSTRACT

Using the nonlinear interaction effect between ultrasonic Lamb waves and microcracks to detect and locate microcracks has the advantages of fast detection speed and high sensitivity. In this paper, a method for microcrack localization based on cross-shaped sensor clusters in a plate is proposed by combining nonlinear ultrasonic Lamb wave technology and time difference of arrival (TDOA) technology. The antisymmetric (A0) mode at low frequency is chosen as the primary Lamb wave to simplify the complication of the dispersion and multi-mode properties of Lamb waves. The selected mode pair (A0-s0) weakens the influence of the cumulative growth effect of higher harmonics induced by the inherent material nonlinearity on the microcrack characteristic signals. Pulse inversion technique and cross correlation function are used to extract the TDOAs of the nonlinear characteristic signals including microcrack information. The cross-shaped sensor clusters approach proposed for the first time can achieve reliable and fast microcrack localization without being affected by the duration of the excitation signal, and a priori knowledge of group velocities of primary wave modes or generated harmonics. Experimental and numerical results validate the proposed method in isotropic and anisotropic plates. This paper provides a new idea for nonlinear ultrasonic nondestructive evaluation and structural health monitoring of microcracks in plates.

6.
Appl Opt ; 60(23): 6950-6957, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34613176

ABSTRACT

We propose a compressive Hadamard computational ghost imaging (CGI) method to restore clear images of objects in the underwater environment. We construct an underwater CGI system model and develop a total variation regularization prior-based compressed-sensing algorithm for the CGI image reconstruction. We design a wavelet enhancement algorithm to further denoise and enhance the quality of the CGI image. We build an experimental setup and implement a series of experiments. The effectiveness and advantages of the proposed method are experimentally investigated. The results show that the proposed method can achieve clear imaging for underwater objects with a sub-Nyquist sampling ratio. The proposed method is helpful for improving the image quality of the underwater CGI.

7.
Materials (Basel) ; 15(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35009379

ABSTRACT

The damaging of ZnSe crystal has a significant impact on its service performance and life. Based on the specific cutting energies for brittle and ductile mode machining, a model is proposed to evaluate the damage depth in the shoulder region of ZnSe crystal during single point diamond machining. The model considers the brittle-ductile transition and spring back of ZnSe crystal. To verify the model, the elastic modulus, hardness, spring back, and friction coefficient of ZnSe crystal are measured by nanoindentation and nanoscratch tests, and its critical undeformed chip thickness is obtained by spiral scratching. Meanwhile, orthogonal cutting experiments are conducted to obtain the different shoulder regions and cutting surfaces. The shoulder damage depth is analyzed, indicating that the effect of the feed on the damage depth at a high cutting depth is stronger than that at a low one. The model is verified to be effective with an average relative error of less than 7%. Then, the model is used to calculate the critical processing parameters and achieve a smooth ZnSe surface with a roughness Sa = 1.0 nm. The model is also extended to efficiently predict the bound of the subsurface damage depth of a cutting surface. The research would be useful for the evaluation of surface and subsurface damages during the ultra-precision machining of ZnSe crystal.

8.
Opt Express ; 28(1): 626-640, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-32118986

ABSTRACT

Viscoelastic properties of glass within molding temperatures, such as shear relaxation modulus and bulk relaxation modulus, are key factors to build successful numerical model, predict forming process, and determine optimal process parameters for precision glass molding. However, traditional uniaxial compression creep tests with large strains are very limited in obtaining high-accuracy viscoelastic data of glass, due to the declining compressive stress caused by the increasing cross-sectional area of specimen in testing process. Besides, existing calculation method has limitation in transforming creep data to viscoelasticity data, especially when Poisson's ratio is unknown at molding temperature, which further induces a block to characterize viscoelastic parameter. This study proposes a systematic acquisition method for high-precision viscoelastic data, including creep testing, viscoelasticity calculation, and finite element verification. A minimal uniaxial creep testing (MUCT) method based on thermo-mechanical analysis (TMA) instrument is first built to obtain ideal and accurate creep data, by keeping compressive stress as a constant. A new calculation method on viscoelasticity determination is then proposed to derive shear relaxation modulus without the need of knowing bulk modulus or Poisson's ratio, which, compared with traditional method, extends the application range of viscoelasticity calculation. After determination, the obtained viscoelastic data are further incorporated into a numerical simulation model of MUCT to verify the accuracy of the determined viscoelasticity. Base on the great consistence between simulated and measured results (uniaxial creep displacement), the proposed systematic acquisition method can be used as a high accuracy viscoelasticity determination method.

9.
Opt Express ; 28(3): 3846-3853, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32122046

ABSTRACT

We propose a deep learning computational ghost imaging (CGI) scheme to achieve sub-Nyquist and high-quality image reconstruction. Unlike the second-order-correlation CGI and compressive-sensing CGI, which use lots of illumination patterns and a one-dimensional (1-D) light intensity sequence (LIS) for image reconstruction, a deep neural network (DAttNet) is proposed to restore the target image only using the 1-D LIS. The DAttNet is trained with simulation data and retrieves the target image from experimental data. The experimental results indicate that the proposed scheme can provide high-quality images with a sub-Nyquist sampling ratio and performs better than the conventional and compressive-sensing CGI methods in sub-Nyquist sampling ratio conditions (e.g., 5.45%). The proposed scheme has potential practical applications in underwater, real-time and dynamic CGI.

10.
Opt Express ; 27(20): 28364-28382, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684589

ABSTRACT

With single-point diamond turning (SPDT), a series of samples are processed under different cutting parameters. The brittle-ductile transition depth of ZnSe crystal is obtained, and the damages of the samples are measured from surface and subsurface damage depths as well as damage density. The effects of cutting parameters on the damages are investigated quantitatively. The results show the cutting depth has a minor while the feed has a major effects on the damages. Also, the interaction effect between feed and cutting depth is very small for surface damage depth or damage density, while it is large for subsurface damage depth. Based on the indentation mechanics and the kinetic characteristics of SPDT, a model is proposed to evaluate the surface and subsurface damage depths of ZnSe crystal by cutting parameters. The model has an average relative error less than 15.0%, which could be further used to obtain the depth and the removal characteristics of cracks in shoulder region.

11.
Opt Express ; 26(4): 4638-4655, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475312

ABSTRACT

Based on micro-indentation mechanics and kinematics of grinding processes, theoretical formulas are deduced to calculate surface roughness (SR) and subsurface damage (SSD) depth. The SRs and SSD depths of a series of fused silica samples, which are prepared under different grinding parameters, are measured. By experimental and theoretical analysis, the relationship between SR and SSD depth is discussed. The effect of grinding parameters on SR and SSD depth is investigated quantitatively. The results show that SR and SSD depth decrease with the increase of wheel speed or the decrease of feed speed as well as cutting depth. The interaction effect between wheel speed and feed speed should be emphasized greatly. Furthermore, a relationship model between SSD depth and grinding parameters is established, which could be employed to evaluate SSD depth efficiently.

12.
Appl Opt ; 56(3): 702-711, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28157934

ABSTRACT

Chemical etching is usually utilized to measure, reduce, and remove the subsurface micro-cracks in optical components, which makes it significant to study the surface evolution of optical components during the etching process. Etching experiments were carried out for glass with artificial cracks and micro-cracks under different etching conditions. The etching rate was obtained, which is linear with the hydrofluoric acid (HF) concentration and greatly affected by etching temperature. By measuring the surface roughness (SR) and morphology of glasses after etching, it is found that the crack width always increases with etching time, while the crack depth remains unchanged after the crack is completely exposed. Meanwhile, the SR increases sharply at first, then increases slowly, and finally decreases with the increase of etching time. Considering the influence of HF concentration, etching temperature, and the diffusion coefficient on the etching rate, simulation models were established for etching trailing indent cracks (TICs) to further analyze the evolution of SR and morphology. The simulation results were compared with the experimental ones, also indicating that the maximum SR (Ra) increases greatly with the crack's aspect ratio and the model for analyzing the crack's morphology evolution is more reasonable.

SELECTION OF CITATIONS
SEARCH DETAIL
...