Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 13(1): 14507, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37666861

ABSTRACT

Improving the human reliability of the human-machine interface (HMI) of deep-sea manned submersible is of great importance for the development of the deep-sea field. Based on the SHEL (Software S, Hardware H, Environment E, Liveware L) model, this study classifies the performance shaping factors (PSF) that affect the human reliability of submersible HMIs and builds a PSF system. The interpretative structural model (ISM) is used to matrix the interactions between the elements that make up the system of PSF. A multi-level recursive structure is obtained by building the corresponding adjacency matrix. The Noisy-OR model is introduced to construct a Bayesian network in order to build a new HMI evaluation method. A real case of Bayesian network causal inference verifies the validity of the built method. This study proposes a set of HMI human reliability evaluation methods applicable to deep-sea manned submersible, which provides a new idea for human reliability assessment.


Subject(s)
Records , Humans , Bayes Theorem , Reproducibility of Results , Models, Structural
2.
Brain Sci ; 13(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37190603

ABSTRACT

This study aimed to enhance the real-time performance and accuracy of vigilance assessment by developing a hidden Markov model (HMM). Electrocardiogram (ECG) signals were collected and processed to remove noise and baseline drift. A group of 20 volunteers participated in the study. Their heart rate variability (HRV) was measured to train parameters of the modified hidden Markov model for a vigilance assessment. The data were collected to train the model using the Baum-Welch algorithm and to obtain the state transition probability matrix A^ and the observation probability matrix B^. Finally, the data of three volunteers with different transition patterns of mental state were selected randomly and the Viterbi algorithm was used to find the optimal state, which was compared with the actual state. The constructed vigilance assessment model had a high accuracy rate, and the accuracy rate of data prediction for these three volunteers exceeded 80%. Our approach can be used in wearable products to improve their vigilance level assessment functionality or in other fields that have key positions with high concentration requirements and monotonous repetitive work.

SELECTION OF CITATIONS
SEARCH DETAIL
...