Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 24(1): 182, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790003

ABSTRACT

BACKGROUND: Metabolic reprogramming contributes to bladder cancer development. This study aimed to understand the role of SLC7A5 in bladder cancer. METHODS: We systematically analyzed the correlation between SLC7A5 and bladder cancer through various approaches, including bioinformatics, western blotting, cell cycle analysis, cell proliferation assays, and invasion experiments. We also investigated the immunological features within the tumor microenvironment (TME), encompassing cancer immune cycles, immune modulators, immune checkpoints, tumor-infiltrating immune cells (TIIC), T cell inflammation scores, and treatment responses. Additionally, for a comprehensive assessment of the expression patterns and immunological roles of SLC7A5, pan-cancer analysis was performed using cancer genomics datasets. RESULTS: SLC7A5 was associated with adverse prognosis in bladder cancer patients, activating the Wnt pathway and promoting bladder cancer cell cycle progression, proliferation, migration, and invasion. Based on the evidence that SLC7A5 positively correlated with immunomodulators, TIIC, the cancer immune cycle, immune checkpoint and T cell inflammation scores, we also found that SLC7A5 was associated with the inflammatory tumor immune microenvironment. EGFR-targeted therapy, cancer immunotherapy, and radiation therapy were effective for patients with high SLC7A5 expression in bladder cancer. Low SLC7A5 patients were, however, sensitive to targeted therapies and anti-angiogenic therapy, such as blocking ß-catenin network, PPAR-γ and FGFR3 signaling. Anti-SLC7A5 combined with cancer immunotherapy may have greater effectiveness than either therapy alone. Furthermore, we observed specific overexpression of SLC7A5 in TME of various cancers. CONCLUSION: SLC7A5 can predict therapeutic response to immunotherapy, radiotherapy and chemotherapy in bladder cancer patients. Targeting SLC7A5 in combination with immunotherapy may be a potentially appropriate treatment option.

2.
iScience ; 27(4): 109442, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38523786

ABSTRACT

Automatically and accurately segmenting skin lesions can be challenging, due to factors such as low contrast and fuzzy boundaries. This paper proposes a hybrid encoder-decoder model (CTH-Net) based on convolutional neural network (CNN) and Transformer, capitalizing on the advantages of these approaches. We propose three modules for skin lesion segmentation and seamlessly connect them with carefully designed model architecture. Better segmentation performance is achieved by introducing SoftPool in the CNN branch and sandglass block in the bottleneck layer. Extensive experiments were conducted on four publicly accessible skin lesion datasets, ISIC 2016, ISIC 2017, ISIC 2018, and PH2 to confirm the efficacy and benefits of the proposed strategy. Experimental results show that the proposed CTH-Net provides better skin lesion segmentation performance in both quantitative and qualitative testing when compared with state-of-the-art approaches. We believe the CTH-Net design is inspiring and can be extended to other applications/frameworks.

3.
Front Pharmacol ; 14: 1163115, 2023.
Article in English | MEDLINE | ID: mdl-37197406

ABSTRACT

Bladder cancer (BLCA) is a heterogeneous disease, and there are many classical molecular subtypes that reflect tumor immune microenvironment (TME) heterogeneity but their clinical utility is limited and correct individual treatment and prognosis cannot be predicted based on them. To find reliable and effective biomarkers and tools for predicting patients' clinical responses to several therapies, we developed a new systemic indicator of molecular vasculogenic mimicry (VM)-related genes mediated by molecular subtypes based on the Xiangya cohort and additional external BLCA cohorts using a random forest algorithm. A correlation was then done between the VM_Score and classical molecular subtypes, clinical outcomes, immunophenotypes, and treatment options for BLCA. With the VM_Score, it is possible to predict classical molecular subtypes, immunophenotypes, prognosis, and therapeutic potential of BLCA with high accuracy. The VM_Scores of high levels indicate a more anticancer immune response but a worse prognosis due to a more basal and inflammatory phenotype. The VM_Score was also found associated with low sensitivity to antiangiogenic and targeted therapies targeting the FGFR3, ß-catenin, and PPAR-γ pathways but with high sensitivity to cancer immunotherapy, neoadjuvant chemotherapy, and radiotherapy. A number of aspects of BLCA biology were reflected in the VM_Score, providing new insights into precision medicine. Additionally, the VM_Score may be used as an indicator of pan-cancer immunotherapy response and prognosis.

4.
Front Genet ; 14: 1148437, 2023.
Article in English | MEDLINE | ID: mdl-36936425

ABSTRACT

Background: ACER2 is a critical gene regulating cancer cell growth and migration, whereas the immunological role of ACER2 in the tumor microenvironment (TME) is scarcely reported. Thus, we lucubrate the potential performance of ACER2 in bladder cancer (BLCA). Methods: We initially compared ACER2 expressions in BLCA with normal urothelium tissues based on data gathered from the Cancer Genome Atlas (TCGA) and our Xiangya cohort. Subsequently, we systematically explored correlations between ACER2 with immunomodulators, anti-cancer immune cycles, tumor-infiltrating immune cells, immune checkpoints and the T-cell inflamed score (TIS) to further confirm its immunological role in BLCA TME. In addition, we performed ROC analysis to illustrate the accuracy of ACER2 in predicting BLCA molecular subtypes and explored the response to several cancer-related treatments. Finally, we validated results in an immunotherapy cohort and Xiangya cohort to ensure the stability of our study. Results: Compared with normal urinary epithelium, ACER2 was significantly overexpressed in several cell lines and the tumor tissue of BLCA. ACER2 can contribute to the formation of non-inflamed BLCA TME supported by its negative correlations with immunomodulators, anti-cancer immune cycles, tumor-infiltrating immune cells, immune checkpoints and the TIS. Moreover, BLCA patients with high ACER2 expression were inclined to the luminal subtype, which were characterized by insensitivity to neoadjuvant chemotherapy, chemotherapy and radiotherapy but not to immunotherapy. Results in the IMvigor210 and Xiangya cohort were consistent. Conclusion: ACER2 could accurately predict the TME and clinical outcomes for BLCA. It would be served as a promising target for precision treatment in the future.

5.
Cancers (Basel) ; 14(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36358736

ABSTRACT

The gut microbiota is a large symbiotic community of anaerobic and facultative aerobic bacteria inhabiting the human intestinal tract, and its activities significantly affect human health. Increasing evidence has suggested that the gut microbiome plays an important role in tumor-related immune regulation. In the tumor microenvironment (TME), the gut microbiome and its metabolites affect the differentiation and function of immune cells regulating the immune evasion of tumors. The gut microbiome can indirectly influence individual responses to various classical tumor immunotherapies, including immune checkpoint inhibitor therapy and adoptive immunotherapy. Microbial regulation through antibiotics, prebiotics, and fecal microbiota transplantation (FMT) optimize the composition of the gut microbiome, improving the efficacy of immunotherapy and bringing a new perspective and hope for tumor treatment.

6.
Int J Biol Macromol ; 190: 11-18, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34478791

ABSTRACT

The development of advanced energy storage systems, such as rechargeable batteries and supercapacitors (SCs), is one of the great challenges related to energy demand with the rapid development of world economy. Herein, a three-dimensional hierarchical porous lignin-derived carbon/WO3 (HPC/WO3) was prepared by carbonization and solvothermal process. This electrode material for supercapacitor can be operated at a wide voltage window range of -0.4 V to 1.0 V. More importantly, 3HPC/WO3 with ultrahigh mass loading (~3.56 mg cm-2) has excellent specific capacitance of 432 F g-1 at 0.5 A g-1 and cycling stability of 86.6% after 10,000 cycles at 10 A g-1. The as-assembled asymmetrical supercapacitor shows an energy density of 34.2 W h kg-1 at a power density of 237 W kg-1 and energy density of 16 W h kg-1 at a power density is 14,300 W kg-1. A solid-state planar micro-supercapacitor (MSC) was fabricated using HPC/WO3 nanocomposites. Moreover, the calculated specific capacity of MSC was 20 mF cm-2 in polyvinyl alcohol-sulfuric acid gel electrolyte. Overall, through the reasonable design of HPC/WO3 nanocomposite materials and the efficient assembly of MSCs, the performance of the device was greatly improved, thus providing a clear strategy for the development of energy storage devices.


Subject(s)
Carbon/chemistry , Electric Capacitance , Lignin/chemistry , Oxides/chemistry , Tungsten/chemistry , Adsorption , Electrochemistry , Nitrogen/chemistry , Porosity , X-Ray Diffraction
7.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-33737500

ABSTRACT

Hypoxia plays an important role in many heart diseases. MicroRNA-9 (miR-9) has been reported to be involved in hypoxia-induced cell proliferation, injury and apoptosis in cardiomyocytes. However, the underlying mechanism still remains poorly understood. The expression levels of miR-9 and cyclin-dependent kinase 8 (CDK8) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The relative protein expression was measured by Western blot. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), lactate dehydrogenase (LDH) measurement, flow cytometry assays were conducted to detect cell proliferation, the release of LDH and cell apoptosis, respectively. The potential relationship between miR-9 and CDK8 was predicted by online database, and confirmed by dual-luciferase reporter assay. We found that miR-9 was increased, while CDK8 was decreased in hypoxia-treated H9c2 cells. miR-9 down-regulation or CDK8 up-regulation promoted cell proliferation, while repressed cell damage and apoptosis in hypoxia-induced H9c2 cells. Moreover, CDK8 was identified to be target of miR-9, and CDK8 knockdown could reverse the effects of miR-9 inhibitor on cell proliferation, damage and apoptosis in hypoxia-treated H9c2 cells. Besides, miR-9 could regulate the Wnt/b-catenin pathway by targeting CDK8 in hypoxic-induced H9c2 cells. In conclusion, miR-9 repressed cell proliferation and promoted cell damage and apoptosis by binding to CDK8 through the Wnt/ ß-catenin pathway in hypoxic-induced H9c2 cells, which provided a new direction for further studying the treatment of hypoxia-aroused heart diseases.


Subject(s)
Apoptosis/genetics , Cyclin-Dependent Kinase 8/genetics , MicroRNAs/genetics , Myocytes, Cardiac/physiology , Animals , Cell Hypoxia/genetics , Gene Expression Regulation , Myocytes, Cardiac/pathology , Rats , Wnt Signaling Pathway/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...