Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Mob Comput ; 18(3): 702-714, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30774566

ABSTRACT

This paper presents a new holistic vision-based mobile assistive navigation system to help blind and visually impaired people with indoor independent travel. The system detects dynamic obstacles and adjusts path planning in real-time to improve navigation safety. First, we develop an indoor map editor to parse geometric information from architectural models and generate a semantic map consisting of a global 2D traversable grid map layer and context-aware layers. By leveraging the visual positioning service (VPS) within the Google Tango device, we design a map alignment algorithm to bridge the visual area description file (ADF) and semantic map to achieve semantic localization. Using the on-board RGB-D camera, we develop an efficient obstacle detection and avoidance approach based on a time-stamped map Kalman filter (TSM-KF) algorithm. A multi-modal human-machine interface (HMI) is designed with speech-audio interaction and robust haptic interaction through an electronic SmartCane. Finally, field experiments by blindfolded and blind subjects demonstrate that the proposed system provides an effective tool to help blind individuals with indoor navigation and wayfinding.

2.
Sensors (Basel) ; 16(2): 217, 2016 Feb 06.
Article in English | MEDLINE | ID: mdl-26861351

ABSTRACT

We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor's projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances.


Subject(s)
Aircraft , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/instrumentation , Photography/methods , Equipment Design , Image Enhancement , Photogrammetry/instrumentation
3.
Sensors (Basel) ; 15(8): 19302-30, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26258778

ABSTRACT

Orientation estimation using low cost sensors is an important task for Micro Aerial Vehicles (MAVs) in order to obtain a good feedback for the attitude controller. The challenges come from the low accuracy and noisy data of the MicroElectroMechanical System (MEMS) technology, which is the basis of modern, miniaturized inertial sensors. In this article, we describe a novel approach to obtain an estimation of the orientation in quaternion form from the observations of gravity and magnetic field. Our approach provides a quaternion estimation as the algebraic solution of a system from inertial/magnetic observations. We separate the problems of finding the "tilt" quaternion and the heading quaternion in two sub-parts of our system. This procedure is the key for avoiding the impact of the magnetic disturbances on the roll and pitch components of the orientation when the sensor is surrounded by unwanted magnetic flux. We demonstrate the validity of our method first analytically and then empirically using simulated data. We propose a novel complementary filter for MAVs that fuses together gyroscope data with accelerometer and magnetic field readings. The correction part of the filter is based on the method described above and works for both IMU (Inertial Measurement Unit) and MARG (Magnetic, Angular Rate, and Gravity) sensors. We evaluate the effectiveness of the filter and show that it significantly outperforms other common methods, using publicly available datasets with ground-truth data recorded during a real flight experiment of a micro quadrotor helicopter.

4.
IEEE Trans Syst Man Cybern B Cybern ; 42(3): 850-63, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22275717

ABSTRACT

In this paper, we present a multirobot exploration algorithm that aims at reducing the exploration time and to minimize the overall traverse distance of the robots by coordinating the movement of the robots performing the exploration. Modeling the environment as a tree, we consider a coordination model that restricts the number of robots allowed to traverse an edge and to enter a vertex during each step. This coordination is achieved in a decentralized manner by the robots using a set of active landmarks that are dropped by them at explored vertices. We mathematically analyze the algorithm on trees, obtaining its main properties and specifying its bounds on the exploration time. We also define three metrics of performance for multirobot algorithms. We simulate and compare the performance of this new algorithm with those of our multirobot depth first search (MR-DFS) approach presented in our recent paper and classic single-robot DFS.


Subject(s)
Algorithms , Artificial Intelligence , Biomimetics/methods , Decision Support Techniques , Exploratory Behavior , Models, Theoretical , Pattern Recognition, Automated/methods , Computer Simulation
5.
J Theor Biol ; 264(3): 747-59, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20211189

ABSTRACT

A great variety of biological groups form a self-organized swarming motion at some point during their life spans, which has two prominent collective features: common velocity and constant spacings among members. In this paper, we present a general individual-based motion framework to explain such collective motion of swarms in homogeneous environments. The motion framework utilizes the concept of social interactions that has been widely accepted throughout the literature. We assume that during the motion of the swarm, each member senses and interacts with its neighbors via virtual Attraction/Alignment/Repulsion (A/A/R) forces, while perceiving and following the gradient force of the environment. During the swarm's motion, the neighborhood and the interaction relations among members may dynamically change. To explicitly consider the effect of such dynamic change on the emergence of swarm's collective behavior, we use an algebraic graph to model the topology of the interaction and the neighborhood relations among the members. By using mathematical tools of nonsmooth analysis theory and Lyapunov stability theory, we analytically prove that if the A/A/R forces have limited ranges, and the attraction/repulsion forces are balanced at a certain range, the proposed framework leads to a parallel type of collective motion of the swarm. We mathematically show that the velocities of all swarm members asymptotically converge to a common value and the spacings among neighbors remain unchanging. In addition to the mathematical analysis, a few sets of simulation results are included to demonstrate the presented framework. The contributions of this paper are twofold: First, unlike most works in the literature that mainly use computer simulations to study the swarming phenomena, this paper provides an analytical methodology to investigate how the collective group behavior is self-organized by individual motions. Second, the presented motion framework works over a general range of A/A/R interactions. In other words, we analytically prove that the commonly used A/A/R model can lead to a collective motion of the swarm. In addition, we show that the alternative model in the literature that uses only attraction/repulsion (A/R) interactions is in fact a special case of the A/A/R model.


Subject(s)
Algorithms , Models, Biological , Social Behavior , Animal Migration , Animals , Computer Simulation , Population Dynamics , Spatial Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...