Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 18(1): 336-346, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29240435

ABSTRACT

Room-temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize three-dimensional (3D) titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy, and computational modeling revealed that the strong interaction between titania and graphene through comparably strong van der Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+, and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

2.
Nano Lett ; 17(3): 1512-1519, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28177638

ABSTRACT

When designing nano-Si electrodes for lithium-ion batteries, the detrimental effect of the c-Li15Si4 phase formed upon full lithiation is often a concern. In this study, Si nanoparticles with controlled particle sizes and morphology were synthesized, and parasitic reactions of the metastable c-Li15Si4 phase with the nonaqueous electrolyte was investigated. The use of smaller Si nanoparticles (∼60 nm) and the addition of fluoroethylene carbonate additive played decisive roles in the parasitic reactions such that the c-Li15Si4 phase could disappear at the end of lithiation. This suppression of c-Li15Si4 improved the cycle life of the nano-Si electrodes but with a little loss of specific capacity. In addition, the characteristic c-Li15Si4 peak in the differential capacity (dQ/dV) plots can be used as an early-stage indicator of cell capacity fade during cycling. Our findings can contribute to the design guidelines of Si electrodes and allow us to quantify another factor to the performance of the Si electrodes.

3.
ACS Appl Mater Interfaces ; 7(12): 6530-40, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25729881

ABSTRACT

Fully green and facile redox chemistry involving reduction of colloidal iron hydroxide (Fe(OH)3) through green tea (GT) polyphenols produced water-soluble Fe3O4 nanocrystals coated with GT extracts namely epigallocatechin gallate (EGCG) and epicatechin (EC). Electron donating polyphenols stoichiometrically reduced Fe(3+) ions into Fe(2+) ions resulting in the formation of magnetite (Fe3O4) nanoparticles and corresponding oxidized products (semiquinones and quinones) that simultaneously served as efficient surface chelators for the Fe3O4 nanoparticles making them dispersible and stable in water, PBS, and cell culture medium for extended time periods. As-formed iron oxide nanoparticles (2.5-6 nm) displayed high crystallinity and saturation magnetization as well as high relaxivity ratios manifested in strong contrast enhancement observed in T2-weighted images. Potential of green tea-coated superparamagnetic iron oxide nanocrystals (SPIONs) as superior negative contrast agents was confirmed by in vitro and in vivo experiments. Primary human macrophages (J774A.1) and colon cancer cells (CT26) were chosen to assess cytotoxicity and cellular uptake of GT-, EGCGq-, and ECq-coated Fe3O4 nanoparticles, which showed high uptake efficiencies by J774A.1 and CT26 cells without any additional transfection agent. Furthermore, the in vivo accumulation characteristics of GT-coated Fe3O4 nanoparticles were similar to those observed in clinical studies of SPIONs with comparable accumulation in epidermoid cancer-xenograft bearing mice. Given their promising transport and uptake characteristics and new surface chemistry, GT-SPIONs conjugates can be applied for multimodal imaging and therapeutic applications by anchoring further functionalities.


Subject(s)
Camellia sinensis/chemistry , Catechin/analogs & derivatives , Catechin/chemistry , Ferric Compounds/chemistry , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Plant Extracts/chemistry , Animals , Cell Line , Cell Survival , Humans , Macrophages/chemistry , Macrophages/cytology , Magnetic Resonance Imaging/instrumentation , Mice
4.
Nanotoxicology ; 7(4): 402-16, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22394310

ABSTRACT

ZnO nanoparticles (NPs) elicit significant adverse effects in various cell types, organisms and in the environment. The toxicity of nanoscale ZnO has often been ascribed to the release of zinc ions from the NPs but it is not yet understood to which extent these ions contribute to ZnO NP toxicity and what are the underlying mechanisms. Here, we take one step forward by demonstrating that ZnO-induced Jurkat cell death is largely an ionic effect involving the extracellular release of high amounts of Zn(II), their rapid uptake by the cells and the induction of a caspase-independent alternative apoptosis pathway that is independent of the formation of ROS. In addition, we identified novel coating strategies to reduce ZnO NP dissolution and subsequent adverse effects.


Subject(s)
Cell Death/drug effects , Metal Nanoparticles/toxicity , Zinc Oxide/toxicity , Caspases/genetics , Caspases/metabolism , Gene Expression Regulation, Enzymologic , Humans , Jurkat Cells , Membrane Potential, Mitochondrial/drug effects , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , Reactive Oxygen Species , Zinc Oxide/chemistry
5.
ACS Nano ; 6(3): 1925-38, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22303956

ABSTRACT

Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO(2), CeO(2), SiO(2), and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO(2) and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO(2) and CeO(2). We also noted pronounced cytotoxicity for three out of four additional SiO(2) nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO(2) nanoparticles tested and for one of the supplementary SiO(2) nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO(2) nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn(2+) with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn(2+) could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO(2) nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum.


Subject(s)
Antioxidants/metabolism , Cytotoxins/toxicity , Glutathione Transferase/metabolism , Nanoparticles/toxicity , Silicon Dioxide/toxicity , Zinc Oxide/toxicity , Animals , Cell Line, Tumor , Chemical Phenomena , Humans , Oxidative Stress/drug effects , Rats , Time Factors
6.
ACS Nano ; 5(11): 9074-81, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-21999618

ABSTRACT

The biological surface adsorption index (BSAI) is a novel approach to characterize surface adsorption energy of nanomaterials that is the primary force behind nanoparticle aggregation, protein corona formation, and other complex interactions of nanomaterials within biological systems. Five quantitative nanodescriptors were obtained to represent the surface adsorption forces (hydrophobicity, hydrogen bond, polarity/polarizability, and lone-pair electrons) of the nanomaterial interaction with biological components. We have mapped the surface adsorption forces over 16 different nanomaterials. When the five-dimensional information of the nanodescriptors was reduced to two dimensions, the 16 nanomaterials were classified into distinct clusters according their surface adsorption properties. BSAI nanodescriptors are intrinsic properties of nanomaterials useful for quantitative structure-activity relationship (QSAR) model development. This is the first success in quantitative characterization of the surface adsorption forces of nanomaterials in biological conditions, which could open a quantitative avenue in predictive nanomedicine development, risk assessment, and safety evaluation of nanomaterials.


Subject(s)
Biology , Nanostructures/chemistry , Adsorption , Surface Properties
7.
ACS Nano ; 5(8): 6315-24, 2011 Aug 23.
Article in English | MEDLINE | ID: mdl-21790153

ABSTRACT

Ultrasmall superparamagnetic Fe(3)O(4) nanoparticles (USIRONs) were synthesized by a novel, easily scalable chemical reduction of colloidal iron hydroxide under hydrothermal conditions. The average crystallite size (5.1 ± 0.5 nm) and good crystallinity of the samples were supported by HR-TEM analysis and the saturation magnetization value (47 emu g(-1)). Vitamin C, used as a chemical reducing agent, also served as a capping agent in the oxidized form (dehydroascorbic acid, DHAA) to impart nanoparticles with exceptional solubility and stability in water, PBS buffer, and cell culture medium. Detailed physicochemical analysis of the USIRON suspensions provided insight into the magnetic ordering phenomena within the colloid, arising from the formation of uniform clusters displaying a hydrodynamic size of 41 nm. Phantom experiments on the contrast agent (clinical 3 T MRI scanner) revealed an enhanced r(2)/r(1) ratio of 36.4 (r(1)= 5 s(-1) mM(-1) and r(2)= 182 s(-1) mM(-1)) when compared to the clinically approved agents. The potential of the DHAA-Fe(3)O(4) nanoparticles as negative contrast agents for MRI with optimal hydrodynamic size for extended blood circulation times was confirmed by strong contrast observed in T(2)- and T(2)*-weighted images. The cell tests performed with primary human immune-competent cells confirmed the excellent biocompatibility of USIRONs.


Subject(s)
Biocompatible Materials/chemistry , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Water/chemistry , Cell Survival/drug effects , Contrast Media/toxicity , Dehydroascorbic Acid/chemistry , Humans , Macrophages/cytology , Macrophages/drug effects , Magnetite Nanoparticles/toxicity , Models, Molecular , Molecular Conformation , Solubility , Suspensions
8.
Chem Commun (Camb) ; 46(35): 6509-11, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20697624

ABSTRACT

An efficient synthesis of highly crystalline SnO(2) QDs with a narrow size distribution (4.27 +/- 0.67 nm) was achieved by microwave-assisted decomposition of Sn(OtBu)(4) in ionic liquid. Printed structures fabricated from SnO(2) QDs showed typical semiconducting I-V behaviors, and gas sensing properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...