Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Microsyst Nanoeng ; 9: 115, 2023.
Article in English | MEDLINE | ID: mdl-37731914

ABSTRACT

Surface electromyography (sEMG) is widely used in monitoring human health. Nonetheless, it is challenging to capture high-fidelity sEMG recordings in regions with intricate curved surfaces such as the larynx, because regular sEMG electrodes have stiff structures. In this study, we developed a stretchable, high-density sEMG electrode array via layer-by-layer printing and lamination. The electrode offered a series of excellent human‒machine interface features, including conformal adhesion to the skin, high electron-to-ion conductivity (and thus lower contact impedance), prolonged environmental adaptability to resist water evaporation, and epidermal biocompatibility. This made the electrode more appropriate than commercial electrodes for long-term wearable, high-fidelity sEMG recording devices at complicated skin interfaces. Systematic in vivo studies were used to investigate its ability to classify swallowing activities, which was accomplished with high accuracy by decoding the sEMG signals from the chin via integration with an ear-mounted wearable system and machine learning algorithms. The results demonstrated the clinical feasibility of the system for noninvasive and comfortable recognition of swallowing motions for comfortable dysphagia rehabilitation.

3.
Polymers (Basel) ; 14(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36433111

ABSTRACT

Hydrogels with high mechanical strength, good crack resistance, and good adhesion are highly desirable in various areas, such as soft electronics and wound dressing. Yet, these properties are usually mutually exclusive, so achieving such hydrogels is difficult. Herein, we fabricate a series of strong, tough, and adhesive composite hydrogels from polyampholyte (PA) gel reinforced by nonwoven cellulose-based fiber fabric (CF) via a simple composite strategy. In this strategy, CF could form a good interface with the relatively tough PA gel matrix, providing high load-bearing capability and good crack resistance for the composite gels. The relatively soft, sticky PA gel matrix could also provide a large effective contact area to achieve good adhesion. The effect of CF content on the mechanical and adhesion properties of composite gels is systematically studied. The optimized composite gel possesses 35.2 MPa of Young's modulus, 4.3 MPa of tensile strength, 8.1 kJ m-2 of tearing energy, 943 kPa of self-adhesive strength, and 1.4 kJ m-2 of self-adhesive energy, which is 22.1, 2.3, 1.8, 6.0, and 4.2 times those of the gel matrix, respectively. The samples could also form good adhesion to diverse substrates. This work opens a simple route for fabricating strong, tough, and adhesive hydrogels.

4.
RSC Adv ; 8(35): 19852-19860, 2018 May 25.
Article in English | MEDLINE | ID: mdl-35541001

ABSTRACT

Hierarchically porous SiO2/C hollow microspheres (HPSCHMs) were synthesized by a hydrothermal and NaOH-etching combined route. The adsorption performance of the prepared HPSCHMs was investigated to remove Congo Red (CR) in aqueous solution. The results show that the synthesized composite possesses a hollow microspherical structure with hierarchical pores and a diameter of about 100-200 nm, and its surface area is up to 1154 m2 g-1. This material exhibits a remarkable adsorption performance for CR in solution, and its maximum adsorption amount for CR can reach up to 2512 mg g-1. It shows faster adsorption and much higher adsorption capacity than the commercial AC and γ-Al2O3 samples under the same conditions. The studies of the kinetics and thermodynamics indicate that the adsorption of CR on the PHSCHM sample obeys the pseudo-second order model well and belongs to physisorption. The adsorption activation energy is about 7.72 kJ mol-1. In view of the hierarchically meso-macroporous structure, large surface area and pore volume, the HPSCHM material could be a promising adsorbent for removal of pollutants, and it could also be used as a catalyst support.

SELECTION OF CITATIONS
SEARCH DETAIL
...