Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732839

ABSTRACT

Double-flank measurement is the most commonly used method for full inspection of mass-produced gears and has high measurement efficiency, but it cannot obtain the analytical parameters and is not helpful enough to evaluate the NVH performance of the gears. Based on the double-flank rolling tester with a new principle, a simulation method for double-flank measurement and a solving method for analytical parameters are proposed. Using the simulation method, the double-flank measurements without random error can be obtained through the collision detection algorithm. The solving method uses the iteration to obtain the minimum rolling length of each position of the tooth surface, then obtains the analytical parameters of the gear. In the experiments, the difference between the profile deviations obtained by the solving method and superimposed in the simulation method is less than 0.03 µm. The experiment results have verified the correctness of the simulation method and the solving method. These methods can greatly improve the value of double-flank measurement.

2.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793923

ABSTRACT

This article proposes a new self-calibration method for circular encoders based on inertia and a single read-head. The velocity curves of the circular encoder are fitted with polynomials and, based on the principle of circle closure and the periodicity of the distribution for angle intervals, the proportionality between the theoretical value and the actual value of each angle interval is obtained. In the experimental system constructed, the feasibility of the proposed method was verified through self-calibration experiments, repeatability experiments, and comparative experiments with the time-measurement dynamic reversal (TDR) method. In addition, this article also proposes an iterative method to improve the self-calibration accuracy. Experimental verification was carried out, and the results show that the new method can effectively compensate for the error of angle measurement in the circular encoder. The peak-to-peak value of the error of angle measurement was reduced from 239.343" to 11.867", and the repeatability of the calibration results of the new method was less than 2.77".

3.
Sensors (Basel) ; 23(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139574

ABSTRACT

Double-flank measurement is the most commonly used full inspection method on the shop floor. However, the double-flank measurement method cannot measure analytical parameters such as pitch deviations and profile deviations, and this limitation is a pain point in the field of gear measurement. This paper studies the measurability of the analytical parameters of gears based on the results of double-flank measurement, proposes the definition of measurable area, and gives the relationship between the size of the measurable area and the number of teeth and the pressure angle and the gear error. Digital simulation methods were used to conduct measurement experiments on gear analytical parameters. In the experiments, the measurability of the analytical parameters of gears with various typical profile deviations in the double-flank measurement process was verified and analyzed. The test results show that not all profile deviations are unmeasurable in the process of double-flank measurement, but there exists a profile region in which the analytical parameters of the gear can be measured accurately. The size of the measurable area of the profile is mainly determined by the number of teeth and pressure angle of the gear, while the pitch deviations are always measurable under normal conditions.

4.
Sensors (Basel) ; 23(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38005405

ABSTRACT

The clarity evaluation function plays a vital role in the autofocus technique. The accuracy and efficiency of the image clarity evaluation function directly affects the accuracy of autofocus and the speed of focusing. However, classical clarity function values are sensitive to changes in background brightness and changes in object contour length. This paper proposes a normalized absolute values adaptive (NAVA) evaluation function of image clarity. It can eliminate the influence of changes in background brightness and the length of the measured object contour on the image clarity function value. To verify the effectiveness of the NAVA function, several experiments were conducted under conditions of virtual master gear images and actual captured images. For actual captured images, the variation of the evaluation results of the NAVA function is far less than the corresponding variation of the classic clarity function. Compared with classical clarity evaluation functions, the NAVA function can provide normalized absolute clarity values. The correlations between the NAVA function results of image clarity and both the contour length and background brightness of the tested object are weak. The use of the NAVA function in automatic and manual focusing systems can further improve focusing efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...