Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.451
Filter
1.
Opt Express ; 32(12): 21497-21505, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859502

ABSTRACT

Tamm plasmon polaritons (TPPs), localized near the boundary of a dielectric Bragg reflector (DBR) and a thin metal film, have attracted much attention for the lower ohm loss and flexible excitation. However, the radiation loss resulting from the direct coupling to the surroundings hinders their applications. Here, we propose and experimentally demonstrate a new type of hybrid plasmonic quasi-bound state in the continuum (BIC) in a Tamm-surface plasmon polariton system to suppress the radiation loss. Leveraging the scattering of the periodic metal array, the TPP interacts with the surface plasmon polariton (SPP) mode and form a Friedrich-Wintgen type quasi-BIC state that originated from the interference of two surface waves with different natures. Through angle resolved reflectance spectrum measurement, the hybrid plasmonic quasi-BIC was observed in the experiment. Our work proposes a new method to design a high Q mode in plasmonic systems, and thus holds promise for applications in the field of light matter interactions.

2.
J Opt Soc Am A Opt Image Sci Vis ; 41(6): 1122-1127, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856426

ABSTRACT

Synthetic dimensions have drawn intense recent attention in investigating higher-dimensional topological physics and offering additional degrees of freedom for manipulating light. It has been demonstrated that synthetic dimensions can help to concentrate light with different frequencies at different locations. Here, we show that synthetic dimensions can also route light from different incident directions. Our system consists of an interface formed by two different photonic crystals. A synthetic dimension ξ is introduced by shifting the termination position of the photonic crystal on the right-hand side of the interface. We identify a correspondence between ξ and the interface state such that light incident from a specific direction can be collected. Thus, routing incident light from different directions is achieved by designing an interface with a proper distribution of ξ. Traditionally, this goal is achieved with a standard 4f optical system using a convex lens, and our approach offers the possibility for such a capability within a few lattice sites of photonic crystals. Such an approach reduces the size of the system, making it easier for integration. Our work provides, to our knowledge, a new direction for routing light with different momentums and possibly contributes to applications such as lidar.

3.
Front Immunol ; 15: 1402862, 2024.
Article in English | MEDLINE | ID: mdl-38863706

ABSTRACT

Ovarian cancer, ranking as the seventh most prevalent malignancy among women globally, faces significant challenges in diagnosis and therapeutic intervention. The difficulties in early detection are amplified by the limitations and inefficacies inherent in current screening methodologies, highlighting a pressing need for more efficacious diagnostic and treatment strategies. Phage display technology emerges as a pivotal innovation in this context, utilizing extensive phage-peptide libraries to identify ligands with specificity for cancer cell markers, thus enabling precision-targeted therapeutic strategies. This technology promises a paradigm shift in ovarian cancer management, concentrating on targeted drug delivery systems to improve treatment accuracy and efficacy while minimizing adverse effects. Through a meticulous review, this paper evaluates the revolutionary potential of phage display in enhancing ovarian cancer therapy, representing a significant advancement in combating this challenging disease. Phage display technology is heralded as an essential instrument for developing effective immunodiagnostic and therapeutic approaches in ovarian cancer, facilitating early detection, precision-targeted medication, and the implementation of customized treatment plans.


Subject(s)
Cell Surface Display Techniques , Ovarian Neoplasms , Peptide Library , Female , Humans , Ovarian Neoplasms/therapy , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/immunology , Biomarkers, Tumor , Animals , Immunotherapy/methods
4.
Anal Chem ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860917

ABSTRACT

Rapid and sensitive RNA detection is of great value in diverse areas, ranging from biomedical research to clinical diagnostics. Existing methods for RNA detection often rely on reverse transcription (RT) and DNA amplification or involve a time-consuming procedure and poor sensitivity. Herein, we proposed a CRISPR/Cas12a-enabled amplification-free assay for rapid, specific, and sensitive RNA diagnostics. This assay, which we termed T7/G4-CRISPR, involved the use of a T7-powered nucleic acid circuit to convert a single RNA target into numerous DNA activators via toehold-mediated strand displacement reaction and T7 exonuclease-mediated target recycling amplification, followed by activating Cas12a trans-cleavage of the linker strands inhibiting split G-Quadruplex (G4) assembly, thereby inducing fluorescence attenuation proportion to the input RNA target. We first performed step-by-step validation of the entire assay process and optimized the reaction parameters. Using the optimal conditions, T7/G4-CRISPR was capable of detecting as low as 3.6 pM target RNA, obtaining ∼100-fold improvement in sensitivity compared with the most direct Cas12a assays. Meanwhile, its excellent specificity could discriminate single nucleotide variants adjacent to the toehold region and allow species-specific pathogen identification. Furthermore, we applied it for analyzing bacterial 16S rRNA in 40 clinical urine samples, exhibiting a sensitivity of 90% and a specificity of 100% when validated by RT-quantitative PCR. Therefore, we envision that T7/G4-CRISPR will serve as a promising RNA sensing approach to expand the toolbox of CRISPR-based diagnostics.

5.
Environ Res ; : 119402, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866314

ABSTRACT

Antibiotic residues, such as tetracycline (TET), in aquatic environments have become a global concern. The liver and gut are important for immunity and metabolism in aquatic organisms. In this study, juvenile groupers were subjected to 1 and 100 µg/L TET for 14 days, and the physiological changes of these fish were evaluated from the perspective of gut-liver axis. After TET exposure, the liver showed histopathology, lipid accumulation, and ALT activity. An oxidative stress response was induced in the liver and the metabolic pattern was disturbed, especially pyrimidine metabolism. Further, intestinal health was also affected, including the damaged intestinal mucosa, the decreased mRNA expression levels of tight junction proteins (ZO-1, Occludin, and Claudin-3), along with the increased gene expression levels of inflammation (IL-1ß, IL-8, TNF-α) and apoptosis (Casp-3 and p53). The diversity of intestinal microbes increased and the community composition was altered, and several beneficial bacteria (Lactobacillus, Bacteroidales S24-7 group, and Romboutsia) and harmful (Aeromonas, Flavobacterium, and Nautella) exhibited notable correlations with hepatic physiological indicators and metabolites. These results suggested that TET exposure can adversely affect the physiological homeostasis of groupers through the gut-liver axis.

6.
J Dig Dis ; 25(4): 255-265, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38837552

ABSTRACT

OBJECTIVES: In this study we aimed to assess the impact of acetylation of hepatocyte nuclear factor 4α (HNF4α) on lysine 458 on the differentiation therapy of hepatocellular carcinoma (HCC). METHODS: Periodic acid-Schiff (PAS) staining, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and senescence-associated ß-galactosidase (SA-ß-gal) activity analysis were performed to assess the differentiation of HCC cells. HNF4α protein was detected by western blot and immunohistochemistry (IHC). The effects of HNF4α-K458 acetylation on HCC malignancy were evaluated in HCC cell lines, a Huh-7 xenograft mouse model, and an orthotopic model. The differential expression genes in Huh-7 xenograft tumors were screened by RNA-sequencing analysis. RESULTS: K458R significantly enhanced the inhibitory effect of HNF4α on the malignancy of HCC cells, whereas K458Q reduced the inhibitory effects of HNF4α. Moreover, K458R promoted, while K458Q decreased, HNF4α-induced HCC cell differentiation. K458R stabilized HNF4α, while K458Q accelerated the degradation of HNF4α via the ubiquitin proteasome system. K458R also enhanced the ability of HNF4α to inhibit cell growth of HCC in the Huh-7 xenograft mouse model and the orthotopic model. RNA-sequencing analysis revealed that inhibiting K458 acetylation enhanced the transcriptional activity of HNF4α without altering the transcriptome induced by HNF4α in HCC. CONCLUSION: Our data revealed that inhibiting K458 acetylation of HNF4α might provide a more promising candidate for differential therapy of HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Differentiation , Hepatocyte Nuclear Factor 4 , Liver Neoplasms , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Acetylation , Animals , Humans , Mice , Cell Line, Tumor , Lysine/metabolism , Xenograft Model Antitumor Assays
7.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2434-2440, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812152

ABSTRACT

The quality control of Chinese medicinal decoction pieces is one of the key tasks in the traditional Chinese medicine industry. In this study, multi-source information fusion was employed to fuse the data from near-infrared spectroscopy, electronic tongues, and other tests and establish an overall quality consistency evaluation method for Atractylodis Macrocephalae Rhizoma, which provided methodological support for the overall quality evaluation of Atractylodis Macrocephalae Rhizoma. The near-infrared spectroscopy information was measured in both static and dynamic states for 23 batches of Atractylodis Macrocephalae Rhizoma samples from different sources, and the electronic tongue sensory information, moisture content, and leachate content were measured. The overall quality of Atractylodis Macrocephalae Rhizoma was evaluated by multi-source information fusion. The results showed that the near-infrared spectroscopy information of 16122103, 801000509, 801000352, 701003656, HX21L01, and 160956 was different from that of other batches of Atractylodis Macrocephalae Rhizoma powder in the static state, and 701003298, 16122103, 701003656, 701003107, 801000229, and 18090404 were the different batches in the dynamic state. The moisture content showed no significant difference between batches. The leachate content in the batch 801000509 was different from that in other batches. The electronic tongue sensory information of 150721004, 151237, 160703004, HX21M01, HX21K04, HX21K01, and 601003516 was different from that of other batches. Furthermore, data layer fusion was employed to analyze the overall quality of Atractylodis Macrocephalae Rhizoma. Four batches, 150721004, HX21M01, HX21K04, and HX21K01, showed the parameters exceeding the 95% control limits and differed from the other samples in terms of the overall quality. This study integrated the information of moisture, near-infrared spectroscopy, and other sources to evaluate the quality consistency among 23 batches of Atractylodis Macrocephalae Rhizoma samples, which provides a reference for the quality consistency evaluation of Chinese medicinal decoction pieces.


Subject(s)
Atractylodes , Drugs, Chinese Herbal , Quality Control , Rhizome , Spectroscopy, Near-Infrared , Rhizome/chemistry , Atractylodes/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/standards , Spectroscopy, Near-Infrared/methods
8.
Transl Psychiatry ; 14(1): 224, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811572

ABSTRACT

Testosterone has complex effects on psychological traits and behavior; it is associated with social dominance and competition and is a potential human sex pheromone. This study aimed to investigate the associations between testosterone levels, aggressive behavior, and manic symptoms using a network analysis among bipolar disorder (BD) patients in psychiatric emergency departments (PED). Data from January 2021 and March 2022 BD patients in PED were analyzed. Manic symptoms were assessed using the Young Mania Rating Scale (YMRS). Aggression was assessed with subscale of the PANSS scale (PANSS-AG). The undirected network structures of testosterone levels, aggressive behavior, and manic symptoms were estimated, and centrality and bridge centrality indices were examined. Network stability was examined using the case-dropping procedure. The Network Comparison Test (NCT) was conducted to evaluate whether network characteristics differed by gender. We recruited a total of 898 BD patients, with the mean YMRS score as 13.30 ± 9.58. The prevalence of level II aggression was 35.6% (95%CI = 32.5%-38.7%), level III aggression was 29.5% (95%CI = 26.3%-32.6%), and level VI aggression was 7.0% (95%CI = 5.4%-8.8%). The male participants had a mean testosterone level of 391.71 (Standard Deviation (SD):223.39) compared to 36.90 (SD:30.50) for female participants in the whole sample. Through network analysis, "Increased motor activity-energy" emerged as the central symptom, with the highest centrality expected influence, followed by "Emotional Instability" and "Disruptive/aggression behavior". Notably, "Emotional Instability" appeared to be the bridge symptom linking manic symptoms to aggressive behavior. Within the flow network model, "Speech rate and amount" exhibited the strongest positive correlation with testosterone levels, followed closely by "Disruptive/aggression behavior". The constructed network model demonstrated robust stability, with gender showing no significant impact on the structure. In this study, "Increased motor activity-energy" stood out as the most influential symptom, and "Speech rate and amount" acted as the main bridge symptom linking testosterone levels, aggressive behavior, and manic symptoms. Targeting the central and bridge symptoms may improve the outcomes of aggression interventions implemented among BD patients in psychiatric emergency care.


Subject(s)
Aggression , Bipolar Disorder , Testosterone , Humans , Bipolar Disorder/physiopathology , Bipolar Disorder/blood , Testosterone/blood , Male , Female , Adult , Cross-Sectional Studies , Middle Aged , Comorbidity , Mania , Psychiatric Status Rating Scales , Young Adult
9.
J Environ Manage ; 360: 121098, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776657

ABSTRACT

Remediation activities, particularly in megasites, may induce substantial secondary environmental impacts that must be addressed for green and sustainable remediation (GSR) practices. Only limited studies are available quantitatively assessing the environmental footprint and environmental benefits of implementing Best Management Practices (BMPs) in megasite remediation. This study used the SiteWise™ tool, a quantitative environmental footprint assessment for scenario simulation and benefit quantification of BMPs, on a contaminated megasite in Hebei Province, China. We observed a considerable environmental footprint and energy from the remediation. Taking the final implementation alternative (Alt 1) as an example, which is characterized by combining multiple remediation techniques, the greenhouse gas (GHG) emissions reached 113,474 t, the energy used was 2,082,841 million metric British thermal units (MMBTU), and other air pollutant emissions (NOx, SOx, and PM10) amounted to 856 t. Further BMP analyses highlighted the benefits of substituting the conventional solidification/stabilization agent with willow woodchip-based biochar, which could reduce GHG emissions by 50,806 t and energy used by 926,648 MMBTU. The overall environmental benefits of implementing all applicable BMPs in the remediation were significant, with a 66.85%, 50.15%, and 56.05% reduction in GHG emissions, energy used, and other air pollutants, respectively. Our study provides insights into quantifying the environmental footprint and exploring emission reduction pathways for contaminated megasite remediation. It also offers a feasible path for quantifying the environmental benefits of BMPs, promoting the development of GSR of contaminated sites.


Subject(s)
Environmental Restoration and Remediation , Environmental Restoration and Remediation/methods , China , Greenhouse Gases/analysis
10.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732153

ABSTRACT

Inflammation is closely associated with cerebrovascular diseases, cardiovascular diseases, diabetes, and cancers, and it is accompanied by the development of autoantibodies in the early stage of inflammation-related diseases. Hence, it is meaningful to discover novel antibody biomarkers targeting inflammation-related diseases. In this study, Jumonji C-domain-containing 6 (JMJD6) was identified by the serological identification of antigens through recombinant cDNA expression cloning. In particular, JMJD6 is an antigen recognized in serum IgG from patients with unstable angina pectoris (a cardiovascular disease). Then, the serum antibody levels were examined using an amplified luminescent proximity homogeneous assay-linked immunosorbent assay and a purified recombinant JMJD6 protein as an antigen. We observed elevated levels of serum anti-JMJD6 antibodies (s-JMJD6-Abs) in patients with inflammation-related diseases such as ischemic stroke, acute myocardial infarction (AMI), diabetes mellitus (DM), and cancers (including esophageal cancer, EC; gastric cancer; lung cancer; and mammary cancer), compared with the levels in healthy donors. The s-JMJD6-Ab levels were closely associated with some inflammation indicators, such as C-reactive protein and intima-media thickness (an atherosclerosis index). A better postoperative survival status of patients with EC was observed in the JMJD6-Ab-positive group than in the negative group. An immunohistochemical analysis showed that JMJD6 was highly expressed in the inflamed mucosa of esophageal tissues, esophageal carcinoma tissues, and atherosclerotic plaques. Hence, JMJD6 autoantibodies may reflect inflammation, thereby serving as a potential biomarker for diagnosing specific inflammation-related diseases, including stroke, AMI, DM, and cancers, and for prediction of the prognosis in patients with EC.


Subject(s)
Autoantibodies , Biomarkers , Inflammation , Jumonji Domain-Containing Histone Demethylases , Humans , Autoantibodies/immunology , Autoantibodies/blood , Biomarkers/blood , Inflammation/immunology , Inflammation/blood , Female , Jumonji Domain-Containing Histone Demethylases/immunology , Jumonji Domain-Containing Histone Demethylases/metabolism , Male , Middle Aged , Neoplasms/immunology , Neoplasms/diagnosis , Neoplasms/blood , Aged , Adult , Diabetes Mellitus/immunology , Diabetes Mellitus/blood
11.
J Gerontol Soc Work ; : 1-20, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762891

ABSTRACT

Mild cognitive impairment (MCI) marks a critical phase in the progression to dementia. In our study, social workers utilized the Multicomponent Nonpharmacological Intervention Approach (MCNIA) to aid MCI participants (N = 52) and their caregivers, dividing into intervention and control groups. The intervention group underwent an additional regimen of non-pharmacological therapies besides pharmacological treatment. Our findings highlighted that: 1) MCNIA significantly enhanced cognitive and daily living abilities in the intervention group; 2) Caregivers experienced reduced burdens and improved social support; 3) Correlation analyses involving biomarkers indicated that MCNIA was particularly effective in alleviating depression in those with slightly more severe cognitive impairment.

12.
Gut Microbes ; 16(1): 2347725, 2024.
Article in English | MEDLINE | ID: mdl-38722028

ABSTRACT

The gut commensal bacteria Christensenellaceae species are negatively associated with many metabolic diseases, and have been seen as promising next-generation probiotics. However, the cultured Christensenellaceae strain resources were limited, and their beneficial mechanisms for improving metabolic diseases have yet to be explored. In this study, we developed a method that enabled the enrichment and cultivation of Christensenellaceae strains from fecal samples. Using this method, a collection of Christensenellaceae Gut Microbial Biobank (ChrisGMB) was established, composed of 87 strains and genomes that represent 14 species of 8 genera. Seven species were first described and the cultured Christensenellaceae resources have been significantly expanded at species and strain levels. Christensenella strains exerted different abilities in utilization of various complex polysaccharides and other carbon sources, exhibited host-adaptation capabilities such as acid tolerance and bile tolerance, produced a wide range of volatile probiotic metabolites and secondary bile acids. Cohort analyses demonstrated that Christensenellaceae and Christensenella were prevalent in various cohorts and the abundances were significantly reduced in T2D and OB cohorts. At species level, Christensenellaceae showed different changes among healthy and disease cohorts. C. faecalis, F. tenuis, L. tenuis, and Guo. tenuis significantly reduced in all the metabolic disease cohorts. The relative abundances of C. minuta, C. hongkongensis and C. massiliensis showed no significant change in NAFLD and ACVD. and C. tenuis and C. acetigenes showed no significant change in ACVD, and Q. tenuis and Geh. tenuis showed no significant change in NAFLD, when compared with the HC cohort. So far as we know, this is the largest collection of cultured resource and first exploration of Christensenellaceae prevalences and abundances at species level.


Subject(s)
Feces , Gastrointestinal Microbiome , Humans , Feces/microbiology , Clostridiales/genetics , Clostridiales/metabolism , Clostridiales/isolation & purification , Clostridiales/classification , Probiotics/metabolism , Metabolomics , Genomics , Male , Phylogeny , Female , Genome, Bacterial
13.
Mar Drugs ; 22(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786621

ABSTRACT

Alginate oligosaccharides (AOS), products of alginate degradation by endotype alginate lyases, possess favorable biological activities and have broad applications. Although many have been reported, alginate lyases with homogeneous AOS products and secretory production by an engineered host are scarce. Herein, the alginate lyase AlyC7 from Vibrio sp. C42 was characterized as a trisaccharide-producing lyase exhibiting high activity and broad substrate specificity. With PelB as the signal peptide and 500 mM glycine as the additive, the extracellular production of AlyC7 in Escherichia coli reached 1122.8 U/mL after 27 h cultivation in Luria-Bertani medium. The yield of trisaccharides from sodium alginate degradation by the produced AlyC7 reached 758.6 mg/g, with a purity of 85.1%. The prepared AOS at 20 µg/mL increased the root length of lettuce, tomato, wheat, and maize by 27.5%, 25.7%, 9.7%, and 11.1%, respectively. This study establishes a robust foundation for the industrial and agricultural applications of AlyC7.


Subject(s)
Escherichia coli , Polysaccharide-Lyases , Trisaccharides , Vibrio , Polysaccharide-Lyases/metabolism , Trisaccharides/biosynthesis , Vibrio/enzymology , Substrate Specificity , Alginates , Zea mays , Oligosaccharides
14.
Front Immunol ; 15: 1398652, 2024.
Article in English | MEDLINE | ID: mdl-38779682

ABSTRACT

In the advancement of Inflammatory Bowel Disease (IBD) treatment, existing therapeutic methods exhibit limitations; they do not offer a complete cure for IBD and can trigger adverse side effects. Consequently, the exploration of novel therapies and multifaceted treatment strategies provides patients with a broader range of options. Within the framework of IBD, gut microbiota plays a pivotal role in disease onset through diverse mechanisms. Bacteriophages, as natural microbial regulators, demonstrate remarkable specificity by accurately identifying and eliminating specific pathogens, thus holding therapeutic promise. Although clinical trials have affirmed the safety of phage therapy, its efficacy is prone to external influences during storage and transport, which may affect its infectivity and regulatory roles within the microbiota. Improving the stability and precise dosage control of bacteriophages-ensuring robustness in storage and transport, consistent dosing, and targeted delivery to infection sites-is crucial. This review thoroughly explores the latest developments in IBD treatment and its inherent challenges, focusing on the interaction between the microbiota and bacteriophages. It highlights bacteriophages' potential as microbiome modulators in IBD treatment, offering detailed insights into research on bacteriophage encapsulation and targeted delivery mechanisms. Particular attention is paid to the functionality of various carrier systems, especially regarding their protective properties and ability for colon-specific delivery. This review aims to provide a theoretical foundation for using bacteriophages as microbiome modulators in IBD treatment, paving the way for enhanced regulation of the intestinal microbiota.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Phage Therapy , Humans , Phage Therapy/methods , Inflammatory Bowel Diseases/therapy , Bacteriophages/physiology , Animals
15.
Proc Natl Acad Sci U S A ; 121(21): e2319060121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753516

ABSTRACT

Multicellular organisms are composed of many tissue types that have distinct morphologies and functions, which are largely driven by specialized proteomes and interactomes. To define the proteome and interactome of a specific type of tissue in an intact animal, we developed a localized proteomics approach called Methionine Analog-based Cell-Specific Proteomics and Interactomics (MACSPI). This method uses the tissue-specific expression of an engineered methionyl-tRNA synthetase to label proteins with a bifunctional amino acid 2-amino-5-diazirinylnonynoic acid in selected cells. We applied MACSPI in Caenorhabditis elegans, a model multicellular organism, to selectively label, capture, and profile the proteomes of the body wall muscle and the nervous system, which led to the identification of tissue-specific proteins. Using the photo-cross-linker, we successfully profiled HSP90 interactors in muscles and neurons and identified tissue-specific interactors and stress-related interactors. Our study demonstrates that MACSPI can be used to profile tissue-specific proteomes and interactomes in intact multicellular organisms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Proteome , Proteomics , Animals , Caenorhabditis elegans/metabolism , Proteomics/methods , Caenorhabditis elegans Proteins/metabolism , Proteome/metabolism , Methionine-tRNA Ligase/metabolism , Methionine-tRNA Ligase/genetics , HSP90 Heat-Shock Proteins/metabolism , Organ Specificity , Muscles/metabolism , Neurons/metabolism
16.
Mycopathologia ; 189(3): 32, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622365

ABSTRACT

The rare fungus Candida saopaulonensis has never been reported to be associated with human infection. We report the draft genome sequence of the first clinical isolate of C. saopaulonensis, which was isolated from a very premature infant with sepsis. This is the first genome assembly reaching the near-complete chromosomal level with structural annotation for this species, opening up avenues for exploring evolutionary patterns and genetic mechanisms of pathogenesis.


Subject(s)
Candida , Sepsis , Humans , Infant, Newborn , Candida/genetics , Genome, Fungal , Infant, Premature
17.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568078

ABSTRACT

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/genetics , Semaphorin-3A/genetics , Feedback , beta Catenin , Ganglia, Spinal , Neuropilin-1/genetics
18.
Biology (Basel) ; 13(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38666893

ABSTRACT

Ammonia is a major water quality factor influencing the survival and health of shrimp, among which the gill is the main effector organ for ammonia toxicity. In this study, we chose two types of Litopenaeus vannamei that were cultured in 30‱ seawater and domesticated in 3‱ low salinity, respectively, and then separately subjected to ammonia stress for 14 days under seawater and low-salinity conditions, of which the 3‱ low salinity-cultured shrimp were domesticated from the shrimp cultured in 30‱ seawater after 27 days of gradual salinity desalination. In detail, this study included four groups, namely the SC group (ammonia-N 0 mg/L, salinity 30‱), SAN group (ammonia-N 10 mg/L, salinity 30‱), LC group (ammonia-N 0 mg/L, salinity 3‱), and LAN group (ammonia-N 10 mg/L, salinity 3‱). The ammonia stress lasted for 14 days, and then the changes in the morphological structure and physiological function of the gills were explored. The results show that ammonia stress caused the severe contraction of gill filaments and the deformation or even rupture of gill vessels. Biochemical indicators of oxidative stress, including LPO and MDA contents, as well as T-AOC and GST activities, were increased in the SAN and LAN groups, while the activities of CAT and POD and the mRNA expression levels of antioxidant-related genes (nrf2, cat, gpx, hsp70, and trx) were decreased. In addition, the mRNA expression levels of the genes involved in ER stress (ire1 and xbp1), apoptosis (casp-3, casp-9, and jnk), detoxification (gst, ugt, and sult), glucose metabolism (pdh, hk, pk, and ldh), and the tricarboxylic acid cycle (mdh, cs, idh, and odh) were decreased in the SAN and LAN groups; the levels of electron-transport chain-related genes (ndh, cco, and coi), and the bip and sdh genes were decreased in the SAN group but increased in the LAN group; and the level of the ATPase gene was decreased but the cytc gene was increased in the SAN and LAN groups. The mRNA expression levels of osmotic regulation-related genes (nka-ß, ca, aqp and clc) were decreased in the SAN group, while the level of the ca gene was increased in the LAN group; the nka-α gene was decreased in both two groups. The results demonstrate that ammonia stress could influence the physiological homeostasis of the shrimp gills, possibly by damaging the tissue morphology, and affecting the redox, ER function, apoptosis, detoxification, energy metabolism, and osmoregulation.

19.
J Cereb Blood Flow Metab ; : 271678X241248907, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661094

ABSTRACT

Blood-brain barrier (BBB) disruption is increasingly recognized as an early contributor to the pathophysiology of cerebral ischemia/reperfusion (I/R) injury, and is also a key event in triggering secondary damage to the central nervous system. Recently, long non-coding RNA (lncRNA) have been found to be associated with ischemic stroke. However, the roles of lncRNA in BBB homeostasis remain largely unknown. Here, we report that long intergenic non-coding RNA-p21 (lincRNA-p21) was the most significantly down-regulated lncRNA in human brain microvascular endothelial cells (HBMECs) after oxygen and glucose deprivation/reoxygenation (OGD/R) treatment among candidate lncRNA, which were both sensitive to hypoxia and involved in atherosclerosis. Exogenous brain-endothelium-specific overexpression of lincRNA-p21 could alleviate BBB disruption, diminish infarction volume and attenuate motor function deficits in middle cerebral artery occlusion/reperfusion (MCAO/R) mice. Further results showed that lincRNA-p21 was critical to maintain BBB integrity by inhibiting the degradation of junction proteins under MCAO/R and OGD/R conditions. Specifically, lincRNA-p21 could inhibit autophagy-dependent degradation of occludin by activating PI3K/AKT/mTOR signaling pathway. Besides, lincRNA-p21 could inhibit VE-cadherin degradation by binding with miR-101-3p. Together, we identify that lincRNA-p21 is critical for BBB integrity maintenance, and endothelial lincRNA-p21 overexpression could alleviate cerebral I/R injury in mice, pointing to a potential strategy to treat cerebral I/R injury.

20.
Ecotoxicol Environ Saf ; 276: 116277, 2024 May.
Article in English | MEDLINE | ID: mdl-38604061

ABSTRACT

Ochratoxin A (OTA) is a common fungal toxin frequently detected in food and human plasma samples. Currently, the physiologically based toxicokinetic (PBTK) model plays an active role in dose translation and can improve and enhance the risk assessment of toxins. In this study, the PBTK model of OTA in rats and humans was established based on knowledge of OTA-specific absorption, distribution, metabolism, and excretion (ADME) in order to better explain the disposition of OTA in humans and the discrepancies with other species. The models were calibrated and optimized using the available kinetic and toxicokinetic (TK) data, and independent test datasets were used for model evaluation. Subsequently, sensitivity analyses and population simulations were performed to characterize the extent to which variations in physiological and specific chemical parameters affected the model output. Finally, the constructed models were used for dose extrapolation of OTA, including the rat-to-human dose adjustment factor (DAF) and the human exposure conversion factor (ECF). The results showed that the unbound fraction (Fup) of OTA in plasma of rat and human was 0.02-0.04% and 0.13-4.21%, respectively. In vitro experiments, the maximum enzyme velocity (Vmax) and Michaelis-Menten constant (Km) of OTA in rat and human liver microsomes were 3.86 and 78.17 µg/g min-1, 0.46 and 4.108 µg/mL, respectively. The predicted results of the model were in good agreement with the observed data, and the models in rats and humans were verified. The PBTK model derived a DAF of 0.1081 between rats and humans, whereas the ECF was 2.03. The established PBTK model can be used to estimate short- or long-term OTA exposure levels in rats and humans, with the capacity for dose translation of OTA to provide the underlying data for risk assessment of OTA.


Subject(s)
Models, Biological , Ochratoxins , Toxicokinetics , Ochratoxins/toxicity , Ochratoxins/pharmacokinetics , Animals , Rats , Humans , Risk Assessment , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...