Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Res ; 251(Pt 1): 118389, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460661

ABSTRACT

Phytoremediation has emerged as a common technique for remediating Cd pollution in farmland soil. Moreover, phosphorus, an essential element for plants, can alter the pectin content of plant cell walls and facilitate the accumulation of Cd in plant tissues, thereby enhancing phytoremediation efficiency. Therefore, pot experiments were conducted in order to investigate the effect of phosphorus levels on Cd extraction, phosphorus transformation and phosphorus-related genes during phytoremediation. The results revealed that an optimal application of suitable phosphate fertilizers elevated the soil's pH and electrical conductivity (EC), facilitated the conversion of soil from insoluble phosphorus into available forms, augmented the release of pertinent enzyme activity, and induced the expression of phosphorus cycling-related genes. These enhancements in soil conditions significantly promoted the growth of ryegrass. When applying phosphorus at a rate of 600 mg/kg, ryegrass exhibited plant height, dry weight, and chlorophyll relative content that were 1.27, 1.26, and 1.18 times higher than those in the control group (P0), while the Cd content was 1.12 times greater than that of P0. The potentially toxic elements decline ratio and bioconcentration factor were 42.86% and 1.17 times higher than those of P0, respectively. Consequently, ryegrass demonstrated the highest Cd removal efficiency under these conditions. Results from redundancy analysis (RDA) revealed a significant correlation among pH, total phosphorus, heavy metal content, phosphorus forms, soil enzyme activity, and phosphorus-related genes. In conclusion, this study suggests applying an optimal amount of suitable phosphate fertilizers can enhance restoration efficiency, leading to a reduction in soil Cd content and ultimately improving the safety of crop production in farmlands.


Subject(s)
Biodegradation, Environmental , Cadmium , Lolium , Phosphorus , Soil Pollutants , Soil Pollutants/metabolism , Soil Pollutants/analysis , Cadmium/metabolism , Phosphorus/metabolism , Phosphorus/analysis , Lolium/metabolism , Lolium/genetics , Lolium/growth & development , Fertilizers/analysis , Soil/chemistry
2.
Nanoscale ; 15(25): 10606-10613, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37309836

ABSTRACT

Optical limiters are greatly needed to protect eyes and sensitive optoelectronic devices such as photodetectors and sensors from laser damage, but they are currently plagued by low efficiency. In this work, we utilized Cu3VSe4 nanocrystals (NCs) to enhance laser protection performance, and they exhibit higher saturation intensity and broader nonlinear spectral response extending into the near IR region than the C60 benchmark. A flexible optical limiter goggle prototype based on the NCs significantly attenuated the incident laser beam, with Z scan and I scan measurements demonstrating a giant nonlinear absorption coefficient ß value of 1.0 × 10-7 m W-1, a large optical damage threshold of 3.5 J cm-2, and a small starting threshold of 0.22 J cm-2. Transient absorption spectroscopy disclosed that the origin of the excellent nonlinearity was associated with quasi-static dielectric resonance behavior and a large TPA cross-section of 3.3 × 106 GM was measured for Cu3VSe4 NCs, suggesting the potential of intermediate bandgap (IB) semiconductors as alternatives to plasmonic noble metals for ultrafast photonics. Hence, optical limiters based on such semiconductors offer new avenues for laser protection in optoelectronic and defense fields.


Subject(s)
Light , Nanoparticles , Optics and Photonics , Lasers , Nanoparticles/chemistry
3.
Anal Chim Acta ; 1272: 341436, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37355318

ABSTRACT

Photocathodic biosensor possesses excellent anti-interference capability in bioanalysis, which however suffers from high electron-hole recombination rate with low photocurrent. Herein, a high-performance inorganic organic P3HT@C60@ZnO nanosphere with cascade energy band arrangement was synthesized as photoactive signal probe, which inherited the advantages of inorganic strong optical absorptivity and organic high mobility for photo-generated holes. Specifically, the well-matched band gap endowed not only the improved life for light generated carrier and promoted separation of electron-hole pairs, but also the expansion of charge-depletion layer, significantly improving the photoelectric conversion efficiency for acquiring an extremely high photocathodic signal that increased by 30 times compared with individual materials. Accordingly, by integrating with the efficient amplification of DNA nanonet derived from clamped hybrid chain reaction (C-HCR), a sensitive P3HT@C60@ZnO nanosphere based photocathodic biosensor was proposed for accurate detection of p53. The experimental results showed that the biosensor had a wide detection range from 0.1 fM to 10 nM and a low detection limit of 0.37 fM toward p53, offering a new avenue to construct sensitive PEC platform with superior anti-interference ability and hold a prospective application in early disease diagnosis and biological analysis.


Subject(s)
Biosensing Techniques , Zinc Oxide , Electrochemical Techniques , Tumor Suppressor Protein p53 , DNA/analysis , Biosensing Techniques/methods , Limit of Detection
4.
Biosens Bioelectron ; 227: 115151, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36821994

ABSTRACT

In this work, by integrating with a highly efficient multilocus domino-like cascade reaction on DNA nanonet, an ultrasensitive PEC biosensor based on dual-sensitized PDA/ZnO@MoS2 QDs photoactive material as signal probe was proposed for detection of miRNA-182-5p. The dual-sensitized PDA/ZnO@MoS2 QD composed by both of p-n and S-scheme heterojunctions on electrode generated an extremely high initial PEC signal, which however quenched by CdTe QDs decorated on DNA nanonet owing to the significant p-n quenching effect. Thereafter, the output DNA (RS) from DSN enzyme-assisted target recycling amplification triggered an ingenious multilocus domino-like DNA cascade reaction on DNA nanonet for releasing numerous CdTe QDs. Thanks to the multilocus domino-like mode that owned abundant binding sites for increasing trigger efficiency and drove cascade reaction automatically advance along four stated pathways, the target conversion rate could be improved effectively compared with that of traditional approaches, significantly enhancing the detection sensitivity. Consequently, the developed PEC biosensor exhibited a low detection limit to 0.17 fM, providing a new avenue for sensitive, fast and reliable sensing of various DNA/RNA.


Subject(s)
Biosensing Techniques , Cadmium Compounds , Quantum Dots , Zinc Oxide , Cadmium Compounds/chemistry , Molybdenum/chemistry , Quantum Dots/chemistry , Tellurium/chemistry , DNA/chemistry , Electrochemical Techniques , Limit of Detection
5.
Chem Asian J ; 17(17): e202200634, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35819362

ABSTRACT

Aryl azide and diaryl tetrazole are both photoactive molecules, which can form nitrene and nitrile imine intermediates respectively by photolysis. Depending on the new finding that the azide can suppress the photolysis of tetrazole in the azide-tetrazole conjugated system, we developed aryl azide-tetrazole probes for the photoactivatable fluorogenic azide alkyne click (PFAAC) reaction, in which the aryl azide-tetrazole probes were not phoroactivatable fluorogenic itself, but the triazole products after click reaction were prefluorophore that can be activated by light. Therefore, in PFAAC chemistry, the fluorescent probes can be activated by two orthogonal events: azide-alkyne click reaction and light, which leads to spatiotemporal resolution and high signal-to-noise ratio. This PFAAC process was proved in vitro by copper-catalyzed or strain-promoted azide-alkyne reactions and in live cells by spatiotemporally controlled organelle imaging. By incorporation a linker to the azide-tetrazole conjugate, this PFAAC chemistry could covalently label extra probes to the biomolecules and spatiotemporally detecting this process by photoinduced fluorescence.


Subject(s)
Alkynes , Azides , Alkynes/chemistry , Azides/chemistry , Click Chemistry , Cycloaddition Reaction , Fluorescent Dyes/chemistry , Tetrazoles/chemistry
6.
Angew Chem Int Ed Engl ; 61(38): e202208383, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35869870

ABSTRACT

Efficient cathode interfacial layers (CILs) are becoming essential elements for organic solar cells (OSCs). However, the absorption of commonly used cathode interfacial materials (CIMs) is either too weak or overlaps too much with that of photoactive materials, hindering their contribution to the light absorption. In this work, we demonstrate the construction of highly efficient CIMs based on 2,7-di-tert-butyl-4,5,9,10-pyrene diimide (t-PyDI) framework. By introducing amino, amino N-oxide and quaternary ammonium bromide as functional groups, three novel self-doped CIMs named t-PyDIN, t-PyDINO and t-PyDINBr are synthesized. These CIMs are capable of boosting the device performances by broadening the absorption, forming ohmic contact at the interface of active layer and electrode, as well as facilitating electron collection. Notably, the device based on t-PyDIN achieved a power conversion efficiency of 18.25 %, which is among the top efficiencies reported to date in binary OSCs.

7.
Nanoscale ; 14(27): 9736-9742, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35765938

ABSTRACT

Peaking carbon emissions and achieving carbon neutrality have become the consensus goal of the international community to solve the environmental problems threatening mankind caused by accumulative greenhouse gases like CO2. Herein we proposed vacancy engineering of two-dimensional (2D) topological W2N3 for efficient CO2 hydrogenation into high value-added chemicals and fuels. Spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM) confirmed a large amount of N vacancies on the catalyst surface, which significantly reduced the energy barrier for the formation of the essential intermediates of *CO and *CHO as revealed by density functional theory (DFT) calculations. Consequently, the highly stable catalyst exhibited efficient CO2 hydrogenation superior to many previous reports with a maximum CO2 conversion rate of 24% and a high selectivity of 23% for C2+ hydrocarbons. This work provided not only insight into the vacancy-controlled CO2 hydrogenation mechanism, but also fresh ammunition to bring the remaining potential of 2D topological transition metal nitrides in the field of catalysis.

8.
Small ; 18(7): e2105763, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34866325

ABSTRACT

Developing efficient, durable, and low-cost earth-abundant elements-based oxygen evolution reaction (OER) catalysts by rapid and scalable strategies is of great importance for future sustainable electrochemical hydrogen production. The earth-abundant high-valency metals, especially vanadium, can modulate the electronic structure of 3d metal oxides and oxyhydroxides and offer the active sites near-optimal adsorption energies for OER intermediates. Here, the authors propose a facile assembling and regulating strategy to controllably synthesize a serial of transition metal (CoFe, NiFe, and NiCo)-based vanadates for efficient OER catalysis. By tuning the reaction concentrations, NiFe-based vanadates with different crystallinities can be facilely regulated, where the catalyst with moderate heterophase (mixed crystalline and amorphous structures) shows the best OER catalytic activity in terms of low overpotential (267 mV at the current density of 10 mA cm-2 ), low Tafel slope (38 mV per decade), and excellent long-term durability in alkaline electrolyte, exceeding its noble metal-based counterparts (RuO2 ) and most current existing OER catalysts. This work not only reports a facile and controllable method to synthesize a series of vanadates-based catalysts with heterophase nanostructures for high-performance OER catalysis, but also may expand the scope of designing cost-effective transition metal-based electrocatalysts for water splitting.

9.
Biosens Bioelectron ; 197: 113806, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34808591

ABSTRACT

Photocathodic biosensor has great capability in anti-interference from reductive substances, however, the low signal intensity of photoactive species with inferior detection sensitivity restricts its wide application. In this work, the P3HT-PbS nanocomposites were synthesized as signal tags, by integrating with target-trigger generated hemin/G-quadruplex nanotail as bi-enhancer to significantly apmplify the photocurrent, an ultrasensitive photocathodic biosensor was proposed for detection of ß2-microglobulin (ß2-MG). Impressively, P3HT with cathode signal is an attractive polymer consisted of substantial thiophene groups with high absorption coefficient and mobility of photo-generated holes, which could anchor with the PbS dots as sensitizer, providing a high charge mobility and strong photosensitivity. More importantly, target-trigger generated hemin/G-quadruplexes could accept the electron from illuminated photoactive species through the conversion of Fe(III)/Fe(II) in hemin, effectively reducing charge recombination rate as well as accelerating the generation of electron acceptor O2 in the assistant of H2O2. Moreover, hemin/G-quadruplexes inherited the HRP mimicking catalytic capability that further improved the produce of plentiful O2. As a result, PEC cathode signal was significantly enhanced for sensitive analysis of ß2-MG protein with a good detection range of 0.1 pg/mL to 100 ng/mL. It would provide a path for establishing PEC platform with excellent anti-interference ability and extend the application of photoelectrochemical (PEC) biosensor in bioanalysis and early disease diagnosis.


Subject(s)
Biosensing Techniques , G-Quadruplexes , Nanocomposites , Electrochemical Techniques , Ferric Compounds , Hemin , Hydrogen Peroxide , Limit of Detection
10.
Zhongguo Zhong Yao Za Zhi ; 46(19): 5088-5095, 2021 Oct.
Article in Chinese | MEDLINE | ID: mdl-34738405

ABSTRACT

The rats were exposed to chronic unpredictable mild stress(CUMS) and kept in separate cages for inducing depressive disorder, which was judged by behavioral indicators. The number and morphology of neurons in hippocampal CA3 area and prefrontal cortex were observed by hematoxylin-eosin(HE) staining. The levels of brain-derived neurotrophic factor(BDNF), 5-hydroxytryptamine(5-HT), 5-hydroxyindoleacetic acid(5-HIAA), dopamine(DA), norepinephrine(NE), glutamic acid(GLU), interleukin-1ß(IL-1ß), interleukin-18(IL-18), and tumor necrosis factor-α(TNF-α) were detected by enzyme-linked immunosorbent assay(ELISA). Real-time polymerase chain reaction(RT-PCR) and Western blot were conducted to determine the mRNA and protein expression levels of related molecules in NLRP3 pathway. The results showed that compared with the model group, acidic polysaccharides from Poria at the low-, medium-, and high-doses(0.1, 0.3 and 0.5 g·kg~(-1)·d~(-1)) all improved the depression-like behavior of rats, increased the number of neurons and the levels of BDNF, 5-HT, 5-HIAA, DA, and NE in the hippocampus, and reduced GLU and serum IL-1ß, IL-18, and TNF-α levels. The mRNA expression levels of ASC, caspase-1, IL-1ß, and IL-18 and the protein expression levels of NLRP3, ASC, caspase-1, IL-1ß, and IL-18 in each medication group were down-regulated, whereas the protein expression levels of pro-caspase-1, pro-IL-1ß, and pro-IL-18 were up-regulated. All these have indicated that acidic polysaccharides from Poria exerted the antidepressant effect possibly by regulating neurotransmitters and NLRP3 inflammasome signaling pathway.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Poria , Animals , Antidepressive Agents , Depression/drug therapy , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neurotransmitter Agents , Polysaccharides/pharmacology , Rats
11.
Nanoscale Horiz ; 6(11): 918-927, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34490855

ABSTRACT

Low dimensional tellurium is currently of great interest for potential electronic applications due to the experimentally observed Weyl fermions and the excellent carrier mobility, on/off ratios and current-carrying capacity in devices. However, the optical properties of Te nanostructures are not well explored, especially in the field of nonlinear optics. Here, we prepared a series of Te nanostructures by electrochemical exfoliation and liquid phase exfoliation methods, including one-dimensional (1D) Te nanowires (NWs), quasi-1D Te nanorods (NRs), zero-dimensional (0D) Te nanodots (NDs) and two-dimensional (2D) Te nanosheets (NSs). Femtosecond Z-scan measurements reveal unique dimension-dependent nonlinear optical (NLO) properties. 1D Te NWs and quasi-1D Te NRs exhibited higher saturable absorption behavior than 0D Te nanostructures, while the 2D Te NSs are a high performance optical limiting material. Ultrafast transient absorption spectroscopy revealed the dimension-dependent exciton dynamics. The reverse saturable absorption of 2D Te NSs is derived from faster exciton relaxation and stronger excited state absorption. This work paves the way for the design of saturable absorbers with high performance and broadens the application of 2D Te in the field of laser protection and other novel ultrafast photonics.

12.
Angew Chem Int Ed Engl ; 60(46): 24478-24483, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34528358

ABSTRACT

Two novel nitrogen-doped, hexa-peri-hexabenzocoronene (HBC)-based nanographenes (NGs) 1 and 2 bearing an azepine and an azocine at the fjord region, respectively, were synthesized and characterized. Notably, structure 1 was synthesized by Diels-Alder reaction of cyclic alkene and tetrachlorothiophene-S,S-dioxide, followed by Suzuki-Miyaura cross-coupling and Scholl-type reactions, which represents a modified strategy to construct NGs. The azo-heptagon-embedded NG 1 leads to a saddle shape, and the azo-octagon-embedded NG 2 exhibits a distorted saddle-helix conformation with the largest torsion angle recorded so far in [5]helicenes. As a result, the different structural topographies for NGs 1 and 2 lead to significant changes in the optical properties including UV absorption and fluorescent emission. Additionally, the 8π-heterocycles azepine and azocine in the NGs 1 and 2 exhibited obvious antiaromatic properties.

13.
Chem Commun (Camb) ; 57(44): 5454-5457, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33954323

ABSTRACT

The mechanism of the deactivation and regeneration of PtSn intermetallic compound nanoparticle (iNP) catalysts was studied by in situ TEM investigation. Our study reveals the reversible dynamic structural transition of the iNPs during deactivation and regeneration, which provides a direct correlation between the atomic structure and the catalytic activity of the iNPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...