Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(2): 288-307, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38189655

ABSTRACT

Ferroptosis, first suggested in 2012, is a type of non-apoptotic programmed cell death caused by the buildup of lipid peroxidation and marked by an overabundance of oxidized poly unsaturated fatty acids. During the last decade, researchers have uncovered the formation of ferroptosis and created multiple drugs aimed at it, but due to poor selectivity and pharmacokinetics, clinical application has been hindered. In recent years, biomedical discoveries and developments in nanotechnology have spurred the investigation of ferroptosis nanomaterials, providing new opportunities for the ferroptosis driven tumours treatment. Additionally, hydrogels have been widely studied in ferroptosis because of their unique 3D structure and excellent controllability. By using these biomaterials, it is possible to achieve controlled release and targeted delivery of drugs, thus increasing the potency of the drugs and minimizing adverse effects. Therefore, summarizing the biomedical nanomaterials, including hydrogels, used in ferroptosis for cancer therapy is a must. This article provides an overview of ferroptosis, detailing its properties and underlying mechanisms. It also categorizes and reviews the use of various nanomaterials in ferroptosis, along with relevant explanations and illustrations. In addition, we discuss the opportunities and challenges facing the application of nanomaterials in ferroptosis. Finally, the development prospects of this field are prospected. This review is intended to provide a foundation for the development and application of biomedical nanomaterials in ferroptosis.


Subject(s)
Ferroptosis , Nanostructures , Neoplasms , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Hydrogels , Nanotechnology , Neoplasms/drug therapy
2.
Pharmaceutics ; 15(7)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37514088

ABSTRACT

Extracellular vesicles (EVs) are small, membrane-based vesicles released by cells that play a critical role in various physiological and pathological processes. They act as vehicles for transporting a variety of endogenous cargo molecules, enabling intercellular communication. Due to their natural properties, EVs have emerged as a promising "cell-free therapy" strategy for treating various diseases, including cancer. They serve as excellent carriers for different therapeutics, including nucleic acids, proteins, small molecules, and other nanomaterials. Modifying or engineering EVs can improve the efficacy, targeting, specificity, and biocompatibility of EV-based therapeutics for cancer therapy. In this review, we comprehensively outline the biogenesis, isolation, and methodologies of EVs, as well as their biological functions. We then focus on specific applications of EVs as drug carriers in cancer therapy by citing prominent recent studies. Additionally, we discuss the opportunities and challenges for using EVs as pharmaceutical drug delivery vehicles. Ultimately, we aim to provide theoretical and technical support for the development of EV-based carriers for cancer treatment.

3.
Pharmaceutics ; 15(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37376059

ABSTRACT

Therapeutic proteins garnered significant attention in the field of disease treatment. In comparison to small molecule drugs, protein therapies offer distinct advantages, including high potency, specificity, low toxicity, and reduced carcinogenicity, even at minimal concentrations. However, the full potential of protein therapy is limited by inherent challenges such as large molecular size, delicate tertiary structure, and poor membrane penetration, resulting in inefficient intracellular delivery into target cells. To address these challenges and enhance the clinical applications of protein therapies, various protein-loaded nanocarriers with tailored modifications were developed, including liposomes, exosomes, polymeric nanoparticles, and nanomotors. Despite these advancements, many of these strategies encounter significant issues such as entrapment within endosomes, leading to low therapeutic efficiency. In this review, we extensively discussed diverse strategies for the rational design of nanocarriers, aiming to overcome these limitations. Additionally, we presented a forward-looking viewpoint on the innovative generation of delivery systems specifically tailored for protein-based therapies. Our intention was to offer theoretical and technical support for the development and enhancement of nanocarriers capable of facilitating cytosolic protein delivery.

SELECTION OF CITATIONS
SEARCH DETAIL
...