Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.836
Filter
1.
Curr Med Imaging ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38726785

ABSTRACT

OBJECTIVE: To investigate the magnetic resonance imaging (MRI) radiomics models in evaluating the human epidermal growth factor receptor 2(HER2) expression in breast cancer.

Materials and Methods: The MRI data of 161 patients with invasive ductal carcinoma (non-special type) of breast cancer were retrospectively collected, and the MRI radiomics models were established based on the MRI imaging features of the fat suppression T2 weighted image (T2WI) sequence, dynamic contrast-enhanced (DCE)-T1WIsequence and joint sequences. The T-test and the least absolute shrinkage and selection operator (LASSO) algorithm were used for feature dimensionality reduction and screening, respectively, and the random forest (RF) algorithm was used to construct the classification model.

Results: The model established by the LASSO-RF algorithm was used in the ROC curve analysis. In predicting the low expression state of HER2 in breast cancer, the radiomics models of the fat suppression T2WI sequence, DCE-T1WI sequence, and the combination of the two sequences showed better predictive efficiency. In the receiver operating characteristic (ROC) curve analysis for the verification set of low, negative, and positive HER2 expression, the area under the ROC curve (AUC) value was 0.81, 0.72, and 0.62 for the DCE-T1WI sequence model, 0.79, 0.65 and 0.77 for the T2WI sequence model, and 0.84, 0.73 and 0.66 for the joint sequence model, respectively. The joint sequence model had the highest AUC value.

Conclusions: The MRI radiomics models can be used to effectively predict the HER2 expression in breast cancer and provide a non-invasive and early assistant method for clinicians to formulate individualized and accurate treatment plans.

2.
Biomed Environ Sci ; 37(4): 387-398, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727161

ABSTRACT

Objective: Recombinase-aided polymerase chain reaction (RAP) is a sensitive, single-tube, two-stage nucleic acid amplification method. This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA), and Acinetobacter baumannii (AB) in the bloodstream based on recombinant human mannan-binding lectin protein (M1 protein)-conjugated magnetic bead (M1 bead) enrichment of pathogens combined with RAP. Methods: Recombinant plasmids were used to evaluate the assay sensitivity. Common blood influenza bacteria were used for the specific detection. Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR (M-RAP) and quantitative PCR (qPCR) assays. Kappa analysis was used to evaluate the consistency between the two assays. Results: The M-RAP method had sensitivity rates of 1, 10, and 1 copies/µL for the detection of SA, PA, and AB plasmids, respectively, without cross-reaction to other bacterial species. The M-RAP assay obtained results for < 10 CFU/mL pathogens in the blood within 4 h, with higher sensitivity than qPCR. M-RAP and qPCR for SA, PA, and AB yielded Kappa values of 0.839, 0.815, and 0.856, respectively ( P < 0.05). Conclusion: An M-RAP assay for SA, PA, and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.


Subject(s)
Bacteremia , Mannose-Binding Lectin , Humans , Mannose-Binding Lectin/blood , Bacteremia/diagnosis , Bacteremia/microbiology , Bacteremia/blood , Recombinases/metabolism , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/genetics , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Bacteria/genetics , Bacteria/isolation & purification
3.
Virulence ; 15(1): 2356692, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38797966

ABSTRACT

The increasing antibiotic resistance poses a significant global health challenge, threatening our ability to combat infectious diseases. The phenomenon of collateral sensitivity, whereby resistance to one antibiotic is accompanied by increased sensitivity to another, offers potential avenues for novel therapeutic interventions against infections unresponsive to classical treatments. In this study, we elucidate the emergence of tobramycin (TOB)-resistant small colony variants (SCVs) due to mutations in the hemL gene, which render S. Typhimurium more susceptible to nitrofurantoin (NIT). Mechanistic studies demonstrate that the collateral sensitivity in TOB-resistant S. Typhimurium SCVs primarily stems from disruptions in haem biosynthesis. This leads to dysfunction in the electron transport chain (ETC) and redox imbalance, ultimately inducing lethal accumulation of reactive oxygen species (ROS). Additionally, the upregulation of nfsA/B expressions facilitates the conversion of NIT prodrug into its active form, promoting ROS-mediated bacterial killing and contributing to this collateral sensitivity pattern. Importantly, alternative NIT therapy demonstrates a significant reduction of bacterial load by more than 2.24-log10 cfu/g in the murine thigh infection and colitis models. Our findings corroborate the collateral sensitivity of S. Typhimurium to nitrofurans as a consequence of evolving resistance to aminoglycosides. This provides a promising approach for treating infections due to aminoglycoside-resistant strains.


Subject(s)
Anti-Bacterial Agents , Nitrofurantoin , Salmonella typhimurium , Tobramycin , Nitrofurantoin/pharmacology , Animals , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Tobramycin/pharmacology , Mice , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Mutation , Female , Reactive Oxygen Species/metabolism , Salmonella Infections/microbiology , Salmonella Infections/drug therapy , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
J Voice ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772832

ABSTRACT

OBJECTIVES: The objective of this study was to assess voice changes in patients with nasopharyngeal carcinoma (NPC) using subjective and objective assessment tools and to make inferences regarding the underlying pathological causes for different phases of radiotherapy (RT). METHODS: A total of 187 (123 males and 64 females) patients with post-RT NPC with no recurrence of malignancy or other voice diseases and 17 (11 males and 6 females) healthy individuals were included in this study. The patients were equally divided into 11 groups according to the number of years after RT. The acoustic analyses, GRBAS (grade, roughness, breathiness, asthenia, and strain) scales, and Voice Handicap Index (VHI)-10 scores were collected and analyzed. RESULTS: The fundamental frequency (F0) parameters in years 1 and 2 and year 11 were significantly lower in patients with NPC than in healthy individuals. The maximum phonation times in years 1 and 11 were significantly shorter than those in healthy individuals. The jitter parameters were significantly different between year 1 and from years 8 to 11 and the healthy individuals. The shimmer parameters were significantly different between years 1, from years 9 to 11, and healthy individuals. Hoarseness was the most prominent problem compared to other items of the GRBAS. The VHI-10 scores were significantly different between years 1 and 2 and year 11 after RT in patients with NPC. CONCLUSIONS: Voice quality was worse in the first 2 years and from years 8 to 11 but remained relatively normal from years 3 to 7 after RT. Patient-reported voice handicaps began during year 3 after RT. The most prominent problem was perceived hoarseness, which was evident in the first 2 years and from years 9 to 11 after RT. The radiation-induced mucous edema, laryngeal intrinsic muscle fibrosis, nerve injuries, upper respiratory tract changes, and decreased lung capacity might be the pathological reasons for voice changes in post-RT patients with NPC.

5.
Int J Biol Macromol ; 270(Pt 2): 132391, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38761914

ABSTRACT

Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.

6.
J Med Chem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781403

ABSTRACT

Molecular hybridization is a well-established strategy for developing new drugs. In the pursuit of promising photosensitizers (PSs) with enhanced photodynamic therapy (PDT) efficiency, a series of novel 5-fluorouracil (5FU) gallium corrole conjugates (1-Ga-4-Ga) were designed and synthesized by hybridizing a chemotherapeutic drug and PSs. Their photodynamic antitumor activity was also evaluated. The most active complex (2-Ga) possesses a low IC50 value of 0.185 µM and a phototoxic index of 541 against HepG2 cells. Additionally, the 5FU-gallium corrole conjugate (2-Ga) exhibited a synergistic increase in cytotoxicity under irradiation. Excitedly, treatment of HepG2 tumor-bearing mice with 2-Ga under irradiation could completely ablate tumors without harming normal tissues. 2-Ga-mediated PDT could disrupt mitochondrial function, cause cell cycle arrest in the sub-G1 phase, and activate the cell apoptosis pathway by upregulating the cleaved PARP expression and the Bax/Bcl-2 ratios. This work provides a useful strategy for the design of new corrole-based chemo-photodynamic therapy drugs.

7.
BMC Cancer ; 24(1): 611, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773399

ABSTRACT

RNA interactomes and their diversified functionalities have recently benefited from critical methodological advances leading to a paradigm shift from a conventional conception on the regulatory roles of RNA in pathogenesis. However, the dynamic RNA interactomes in adenoma-carcinoma sequence of human CRC remain unexplored. The coexistence of adenoma, cancer, and normal tissues in colorectal cancer (CRC) patients provides an appropriate model to address this issue. Here, we adopted an RNA in situ conformation sequencing technology for mapping RNA-RNA interactions in CRC patients. We observed large-scale paired RNA counts and identified some unique RNA complexes including multiple partners RNAs, single partner RNAs, non-overlapping single partner RNAs. We focused on the antisense RNA OIP5-AS1 and found that OIP5-AS1 could sponge different miRNA to regulate the production of metabolites including pyruvate, alanine and lactic acid. Our findings provide novel perspectives in CRC pathogenesis and suggest metabolic reprogramming of pyruvate for the early diagnosis and treatment of CRC.


Subject(s)
Adenoma , Colorectal Neoplasms , MicroRNAs , Pyruvic Acid , RNA, Long Noncoding , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Pyruvic Acid/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , Metabolic Reprogramming
8.
J Ethnopharmacol ; 332: 118357, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763374

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chuanminshen violaceum M. L. Sheh & R. H. Shan (CV) is used as a medicine with roots, which have the effects of benefiting the lungs, harmonizing the stomach, resolving phlegm and detoxifying. Polysaccharide is one of its main active components and has various pharmacological activities, but the structural characterization and pharmacological activities of polysaccharide from the stems and leaves parts of CV are still unclear. AIM OF THE STUDY: The aim of this study was to investigate the optimal extraction conditions for ultrasound-assisted extraction of polysaccharide from CV stems and leaves, and to carry out preliminary structural analyses, anti-inflammatory and antioxidant effects of the obtained polysaccharide and to elucidate the underlying mechanisms. MATERIALS AND METHODS: The ultrasonic-assisted extraction of CV stems and leaves polysaccharides was carried out, and the response surface methodology (RSM) was used to optimize the extraction process to obtain CV polysaccharides (CVP) under the optimal conditions. Subsequently, we isolated and purified CVP to obtain the homogeneous polysaccharide CVP-AP-I, and evaluated the composition, molecular weight, and structural features of CVP-AP-I using a variety of technical methods. Finally, we tested the pharmacological activity of CVP-AP-Ⅰ in an LPS-induced model of oxidative stress and inflammation in intestinal porcine epithelial cells (IPEC-J2) and explored its possible mechanism of action. RESULTS: The crude polysaccharide was obtained under optimal extraction conditions and subsequently isolated and purified to obtain CVP-AP-Ⅰ (35.34 kDa), and the structural characterization indicated that CVP-AP-Ⅰ was mainly composed of galactose, galactose, rhamnose and glucose, which was a typical pectic polysaccharide. In addition, CVP-AP-Ⅰ attenuates LPS-induced inflammation and oxidative stress by inhibiting the expression of pro-inflammatory factor genes and proteins and up-regulating the expression of antioxidant enzyme-related genes and proteins in IPEC-J2, by a mechanism related to the activation of the Nrf2/Keap1 signaling pathway. CONCLUSION: The results of this study suggest that the polysaccharide isolated from CV stems and leaves was a pectic polysaccharide with similar pharmacological activities as CV roots, exhibiting strong anti-inflammatory and antioxidant activities, suggesting that CV stems and leaves could possess the same traditional efficacy as CV roots, which is expected to be used in the treatment of intestinal diseases.

9.
Clinics (Sao Paulo) ; 79: 100376, 2024.
Article in English | MEDLINE | ID: mdl-38733690

ABSTRACT

OBJECTIVE: This study aimed to explore the effects of Apatinib combined with Temozolomide (TMZ) on the levels of Soluble PD-1 (sPD-1) and Soluble Programmed Death-1 Ligand (sPD-L1) in patients with drug-resistant recurrent Glioblastoma (GB). STUDY DESIGN: A total of 69 patients with recurrent GB from September 2020 to March 2022 were recruited and assigned to the control group (n = 34) and observation group (n = 35) according to different treatment options after tumor recurrence. The control group was treated with TMZ, and the observation group was treated with Apatinib combined with TMZ. Levels of sPD-1 and spd-l1, clinical efficacy, survival time and adverse reactions were observed and compared between the two groups. RESULTS: General data including gender, age, body mass index, and combined diseases indicated no statistical significance between groups (p > 0.05). Before the intervention, sPD-1 and sPD-L1 levels were not significantly different in the two groups (p > 0.05). After interventions, levels of PD-1 and sPD-L1 levels decreased significantly (p < 0.05). The objective remission rate and clinical benefit rate of the observation group were higher and overall survival and progression-free survival were longer than those of the control group (p < 0.05). No significant difference was observed in major adverse reactions among patients (p > 0.05). CONCLUSIONS: Apatinib combined with TMZ is safe and effective in the treatment of recurrent GB. The combined application of the two can reduce the levels of sPD-1 and sPD-L1, which has important clinical application value.


Subject(s)
Brain Neoplasms , Drug Resistance, Neoplasm , Glioblastoma , Neoplasm Recurrence, Local , Programmed Cell Death 1 Receptor , Pyridines , Temozolomide , Humans , Temozolomide/therapeutic use , Female , Male , Glioblastoma/drug therapy , Pyridines/therapeutic use , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Adult , Drug Resistance, Neoplasm/drug effects , Brain Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , B7-H1 Antigen/analysis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , Treatment Outcome
10.
World J Clin Oncol ; 15(4): 531-539, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38689626

ABSTRACT

Metastasis remains a major challenge in the successful management of malignant diseases. The liver is a major site of metastatic disease and a leading cause of death from gastrointestinal malignancies such as colon, stomach, and pancreatic cancers, as well as melanoma, breast cancer, and sarcoma. As an important factor that influences the development of metastatic liver cancer, alternative splicing drives the diversity of RNA transcripts and protein subtypes, which may provide potential to broaden the target space. In particular, the dysfunction of splicing factors and abnormal expression of splicing variants are associated with the occurrence, progression, aggressiveness, and drug resistance of cancers caused by the selective splicing of specific genes. This review is the first to provide a detailed summary of the normal splicing process and alterations that occur during metastatic liver cancer. It will cover the role of alternative splicing in the mechanisms of metastatic liver cancer by examining splicing factor changes, abnormal splicing, and the contribution of hypoxia to these changes during metastasis.

11.
Nat Med ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740994

ABSTRACT

Emotional distress (ED), commonly characterized by symptoms of depression and/or anxiety, is prevalent in patients with cancer. Preclinical studies suggest that ED can impair antitumor immune responses, but few clinical studies have explored its relationship with response to immune checkpoint inhibitors (ICIs). Here we report results from cohort 1 of the prospective observational STRESS-LUNG study, which investigated the association between ED and clinical efficacy of first-line treatment of ICIs in patients with advanced non-small-cell lung cancer. ED was assessed by Patient Health Questionnaire-9 and Generalized Anxiety Disorder 7-item scale. The study included 227 patients with 111 (48.9%) exhibiting ED who presented depression (Patient Health Questionnaire-9 score ≥5) and/or anxiety (Generalized Anxiety Disorder 7-item score ≥5) symptoms at baseline. On the primary endpoint analysis, patients with baseline ED exhibited a significantly shorter median progression-free survival compared with those without ED (7.9 months versus 15.5 months, hazard ratio 1.73, 95% confidence interval 1.23 to 2.43, P = 0.002). On the secondary endpoint analysis, ED was associated with lower objective response rate (46.8% versus 62.1%, odds ratio 0.54, P = 0.022), reduced 2-year overall survival rate of 46.5% versus 64.9% (hazard ratio for death 1.82, 95% confidence interval 1.12 to 2.97, P = 0.016) and detriments in quality of life. The exploratory analysis indicated that the ED group showed elevated blood cortisol levels, which was associated with adverse survival outcomes. This study suggests that there is an association between ED and worse clinical outcomes in patients with advanced non-small-cell lung cancer treated with ICIs, highlighting the potential significance of addressing ED in cancer management. ClinicalTrials.gov registration: NCT05477979 .

12.
Clin Exp Med ; 24(1): 93, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693424

ABSTRACT

Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides. Despite their inability to code proteins, multiple studies have identified their important role in human cancer through different mechanisms. LncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1), a newly discovered lncRNA located on human chromosome 15q24.1, has recently been shown to be involved in the occurrence and progression of various malignancies, such as colorectal cancer, gastric cancer, hepatocellular carcinoma, prostate cancer, non-small cell lung cancer, ovarian cancer, cervical cancer, breast cancer, glioma, thymic carcinoma, pancreatic carcinoma. LOXL1-AS1 acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-374b-5p, miR-21, miR-423-5p, miR-589-5p, miR-28-5p, miR-324-3p, miR-708-5p, miR-143-3p, miR-18b-5p, miR-761, miR-525-5p, miR-541-3p, miR-let-7a-5p, miR-3128, miR-3614-5p, miR-377-3p and miR-1224-5p to promote tumor cell proliferation, invasion, migration, apoptosis, cell cycle, and epithelial-mesenchymal transformation (EMT). In addition, LOXL1-AS1 is involved in the regulation of P13K/AKT and MAPK signaling pathways. This article reviews the current understanding of the biological function and clinical significance of LOXL1-AS1 in human cancers. These findings suggest that LOXL1-AS1 may be both a reliable biomarker and a potential therapeutic target for cancers.


Subject(s)
Biomarkers, Tumor , Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Neoplasms/genetics , Neoplasms/pathology , Biomarkers, Tumor/genetics , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
14.
Front Med ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769281

ABSTRACT

Schistosoma infection is one of the major causes of liver fibrosis. Emerging roles of hepatic progenitor cells (HPCs) in the pathogenesis of liver fibrosis have been identified. Nevertheless, the precise mechanism underlying the role of HPCs in liver fibrosis in schistosomiasis remains unclear. This study examined how autophagy in HPCs affects schistosomiasis-induced liver fibrosis by modulating exosomal miRNAs. The activation of HPCs was verified by immunohistochemistry (IHC) and immunofluorescence (IF) staining in fibrotic liver from patients and mice with Schistosoma japonicum infection. By coculturing HPCs with hepatic stellate cells (HSCs) and assessing the autophagy level in HPCs by proteomic analysis and in vitro phenotypic assays, we found that impaired autophagy degradation in these activated HPCs was mediated by lysosomal dysfunction. Blocking autophagy by the autophagy inhibitor chloroquine (CQ) significantly diminished liver fibrosis and granuloma formation in S. japonicum-infected mice. HPC-secreted extracellular vehicles (EVs) were further isolated and studied by miRNA sequencing. miR-1306-3p, miR-493-3p, and miR-34a-5p were identified, and their distribution into EVs was inhibited due to impaired autophagy in HPCs, which contributed to suppressing HSC activation. In conclusion, we showed that the altered autophagy process upon HPC activation may prevent liver fibrosis by modulating exosomal miRNA release and inhibiting HSC activation in schistosomiasis. Targeting the autophagy degradation process may be a therapeutic strategy for liver fibrosis during Schistosoma infection.

15.
Article in English | MEDLINE | ID: mdl-38747453

ABSTRACT

OBJECTIVES: Both age and CYP2C19 genotypes affect voriconazole plasma concentration; the interaction of age and CYP2C19 genotypes on voriconazole plasma concentration remains unknown. This study aims to investigate the combined effects of age and CYP2C19 genotypes on voriconazole plasma concentration in Chinese patients. METHODS: A total of 480 patients who received voriconazole treatment were recruited. CYP2C19*2 (rs4244285) and CYP2C19*3 (rs4986893) polymorphisms were genotyped. Patients were divided into the young and the elderly groups by age of 60 years old. Influence of CYP2C19 genotype on steady-state trough concentration (Css-min) in overall patients and in age subgroups was analyzed. RESULTS: Voriconazole Css-min correlated positively with age, and mean voriconazole Css-min was significantly higher in the elderly group (P < 0.001). CYP2C19 poor metabolizers showed significantly increased mean voriconazole Css-min in the young but not the elderly group. The percentage of patients with subtherapeutic voriconazole Css-min (<1.0 mg/l) was higher in the young group and that of supratherapeutic voriconazole Css-min (>5.5 mg/l) was higher in the elderly patients. When the average Css-min in the CYP2C19 normal metabolizer genotype was regarded as a reference, CYP2C19 genotypes showed greater impact on voriconazole Css-min in the young group, while the influence of age on voriconazole Css-min exceeded CYP2C19 genotypes in the elderly. CONCLUSION: CYP2C19 genotypes affects voriconazole exposure is age dependent. Influence of CYP2C19 poor metabolizer genotype on increased voriconazoleexposure is prominent in the young, while age is a more important determinant factor for increased voriconazole exposure in the elderly patients.

16.
mSystems ; : e0116423, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747582

ABSTRACT

Salmonella 4,[5],12:i:-, a monophasic variant of Salmonella Typhimurium, has emerged as a global cause of multidrug-resistant salmonellosis and has become endemic in many developing and developed countries, especially in China. Here, we have sequenced 352 clinical isolates in Guangdong, China, during 2009-2019 and performed a large-scale collection of Salmonella 4,[5],12:i:- with whole genome sequencing (WGS) data across the globe, to better understand the population structure, antimicrobial resistance (AMR) genomic characterization, and transmission routes of Salmonella 4,[5],12:i:- across Guangdong. Salmonella 4,[5],12:i:- strains showed broad genetic diversity; Guangdong isolates were found to be widely distributed among the global lineages. Of note, we identified the formation of a novel Guangdong clade (Bayesian analysis of population structure lineage 1 [BAPS1]) genetically diversified from the global isolates and likely emerged around 1990s. BAPS1 exhibits unique genomic features, including large pan-genome, decreased ciprofloxacin susceptibility due to mutation in gyrA and carriage of plasmid-mediated quinolone resistance (PMQR) genes, and the multidrug-resistant IncHI2 plasmid. Furthermore, high genetic similarity was found between strains collected from Guangdong, Europe, and North America, indicating the association with multiple introductions from overseas. These results suggested that global dissemination and local clonal expansion simultaneously occurred in Guangdong, China, and horizontally acquired resistance to first-line and last-line antimicrobials at local level, underlying emergences of extensive drug and pan-drug resistance. Our findings have increased the knowledge of global and local epidemics of Salmonella 4,[5],12:i:- in Guangdong, China, and provided a comprehensive baseline data set essential for future molecular surveillance.IMPORTANCESalmonella 4,[5],12:i:- has been regarded as the predominant pandemic serotype causing diarrheal diseases globally, while multidrug resistance (MDR) constitutes great public health concerns. This study provided a detailed and comprehensive genome-scale analysis of this important Salmonella serovar in the past decade in Guangdong, China. Our results revealed the complexity of two distinct transmission modes, namely global transmission and local expansion, circulating in Guangdong over a decade. Using phylogeography models, the origin of Salmonella 4,[5],12:i:- was predicted from two aspects, year and country, that is, Salmonella 4,[5],12:i:- emerged in 1983, and was introduced from the UK, and subsequently differentiated into the local endemic lineage circa 1991. Additionally, based on the pan-genome analysis, it was found that the gene accumulation rate in local endemic BAPS 1 lineage was higher than in other lineages, and the horizontal transmission of MDR IncHI2 plasmid associated with high resistance played a major role, which showed the potential threat to public health.

17.
J Neuroinflammation ; 21(1): 96, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627764

ABSTRACT

BACKGROUND: Gasdermin D (GSDMD)-mediated pyroptotic cell death is implicated in the pathogenesis of cognitive deficits in sepsis-associated encephalopathy (SAE), yet the underlying mechanisms remain largely unclear. Dynamin-related protein 1 (Drp1) facilitates mitochondrial fission and ensures quality control to maintain cellular homeostasis during infection. This study aimed to investigate the potential role of the GSDMD/Drp1 signaling pathway in cognitive impairments in a mouse model of SAE. METHODS: C57BL/6 male mice were subjected to cecal ligation and puncture (CLP) to establish an animal model of SAE. In the interventional study, mice were treated with the GSDMD inhibitor necrosulfonamide (NSA) or the Drp1 inhibitor mitochondrial division inhibitor-1 (Mdivi-1). Surviving mice underwent behavioral tests, and hippocampal tissues were harvested for histological analysis and biochemical assays at corresponding time points. Haematoxylin-eosin staining and TUNEL assays were used to evaluate neuronal damage. Golgi staining was used to detect synaptic dendritic spine density. Additionally, transmission electron microscopy was performed to assess mitochondrial and synaptic morphology in the hippocampus. Local field potential recordings were conducted to detect network oscillations in the hippocampus. RESULTS: CLP induced the activation of GSDMD, an upregulation of Drp1, leading to associated mitochondrial impairment, neuroinflammation, as well as neuronal and synaptic damage. Consequently, these effects resulted in a reduction in neural oscillations in the hippocampus and significant learning and memory deficits in the mice. Notably, treatment with NSA or Mdivi-1 effectively prevented these GSDMD-mediated abnormalities. CONCLUSIONS: Our data indicate that the GSDMD/Drp1 signaling pathway is involved in cognitive deficits in a mouse model of SAE. Inhibiting GSDMD or Drp1 emerges as a potential therapeutic strategy to alleviate the observed synaptic damages and network oscillations abnormalities in the hippocampus of SAE mice.


Subject(s)
Cognitive Dysfunction , Sepsis-Associated Encephalopathy , Sepsis , Animals , Male , Mice , Cognitive Dysfunction/metabolism , Dynamins/metabolism , Hippocampus/metabolism , Mice, Inbred C57BL , Sepsis/pathology , Sepsis-Associated Encephalopathy/metabolism , Signal Transduction
18.
Oncol Res ; 32(5): 899-910, 2024.
Article in English | MEDLINE | ID: mdl-38686047

ABSTRACT

Osteosarcoma is a very serious primary bone cancer with a high death rate and a dismal prognosis. Since there is no permanent therapy for this condition, it is necessary to develop a cure. Therefore, this investigation was carried out to assess the impacts and biological functions of hydroxysafflor yellow A (HYSA) in osteosarcoma cell lines (MG63). In this investigational study, MG63 cells were utilized. Microarray experiments, quantitative polymerase chain reaction (qPCR), immunofluorescent staining, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose consumption, lactate production, and ATP levels, proliferation assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, and Western blot were performed. In MG63 cells, HYSA lowered cell proliferation and metastasis rates, suppressed EDU cell number, and enhanced caspase-3/9 activity levels. HYSA reduced the Warburg effect and induced ferroptosis (FPT) in MG63 cells. Inhibiting ferroptosis diminished HYSA's anti-cancer activities in MG63 cells. The stimulation of the HIF-1α/SLC7A11 pathway decreased HYSA's anti-cancer activities in MG63 cells. HIF-1α is one target spot for HYSA in a model of osteosarcoma cancer (OC). HYSA altered HIF-1α's thermophoretic activity; following binding with HYSA, HIF-1α's melting point increased from ~55°C to ~60°C. HYSA significantly enhanced the thermal stability of exogenous WT HIF-1α while not affecting Mut HIF-1α, suggesting that ARG-311, GLY-312, GLN-347, and GLN-387 may be involved in the interaction between HIF-1α and HYSA. Conclusively, our study revealed that HYSA induced FPT and reduced the Warburg effect of OC through mitochondrial damage by HIF-1α/HK2/SLC7A11 pathway. HYSA is a possible therapeutic option for OC or other cancers.


Subject(s)
Bone Neoplasms , Cell Proliferation , Chalcone , Ferroptosis , Osteosarcoma , Quinones , Humans , Amino Acid Transport System y+/drug effects , Amino Acid Transport System y+/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcone/pharmacology , Chalcone/analogs & derivatives , Ferroptosis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Quinones/pharmacology , Signal Transduction/drug effects , Hexokinase/drug effects , Hexokinase/metabolism
19.
Org Lett ; 26(18): 3801-3805, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38668390

ABSTRACT

Herein, we report a formal synthesis of (±)-arborisidine via the creation of Jiao's intermediate with the critical caged structure. Starting from tryptamine, a Pictet-Spengler cyclization forged the piperidine ring, a Pd-catalyzed indole allylation and ring-closing metathesis protocol afforded a bridged aza-bicyclo[3.3.1]nonane moiety, and an intramolecular N-alkylation closed the final pyrrolidine ring. This study provides a new approach to the unique caged framework of arborisidine and relevant alkaloids.

20.
Int J Biol Macromol ; 268(Pt 2): 131816, 2024 May.
Article in English | MEDLINE | ID: mdl-38677682

ABSTRACT

Paeoniae Radix alba is used in Traditional Chinese Medicine for the treatment of gastrointestinal disorders, immunomodulatory, cancer, and other diseases. In the current study, the yield of Paeoniae Radix alba polysaccharide (PRP) was significantly increased with optimal ultrasound-assisted extraction compared to hot water extraction. Further, an acidic polysaccharide (PRP-AP) was isolated from PRP after chromatographic separation and was characterized as a typical pectic polysaccharide with side chains of arabinogalactans types I and II. Moreover, it showed antioxidant effects on LPS-induced damage on IPEC-J2 cells determined by qRT-PCR and ELISA, including decreasing the pro-inflammatory factors' expressions and increasing the antioxidant enzymes activities, which was shown to be related to the Nrf2/Keap1 pathway modulated by PRP-AP. The metabolites change (such as itaconate, cholesterol sulfate, etc.) detected by untargeted metabolomic analysis in cells was also shown to be modulated by PRP-AP, and these metabolites were further utilized and protected cells damaged by LPS. These results revealed the cellular active mechanism of the macromolecular PRP-AP on protecting cells, and supported the hypothesis that PRP-AP has strong benefits as an alternative dietary supplement for the prevention of intestinal oxidative stress by modulating cellular metabolism.


Subject(s)
Antioxidants , Paeonia , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Paeonia/chemistry , Ultrasonic Waves , Cell Line , Animals , Oxidative Stress/drug effects , Chemical Fractionation/methods , Lipopolysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...