Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Lett ; 14(4): 4021-4028, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28943909

ABSTRACT

Active angiogenesis is the basic pathological feature of glioma. Tumor angiogenesis is involved in vascular endothelial cell migration to the tumor tissue and in the formation of tube-like structures. The present study aimed to investigate the role of leucine-rich repeats and immunoglobulin-like domains 2 (LRIG2) in glioma angiogenesis. Glioma (n=50) and normal brain (n=20) tissue samples were collected from patients to detect the expression of LRIG2, epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGF-A), and cluster of differentiation 31 (CD31) using immunohistochemistry. In addition, the association between the expression of LRIG2 in glioma tissue and the microvessel density (MVD) was analyzed. In vitro, the expression of LRIG2 in human glioma U87 and U251 cell lines was knocked down. Subsequently, cell migration and tube formation assays of human umbilical vein endothelial cells (HUVECs) were performed using a coculture system. The protein expression levels of LRIG2, EGFR, phosphorylated-EGFR and VEGF-A were determined using western blotting. The results demonstrated that the expression levels of LRIG2, EGFR, VEGF-A and CD31 were highly upregulated in glioma tissue samples. Furthermore, LRIG2 expression in glioma tissue samples was significantly correlated with the MVD. In vitro, the downregulation of LRIG2 inhibited HUVEC migration and tube formation induced by coculture with glioma cells. The downregulation of LRIG2 resulted in decreased expression of EGFR and VEGF-A. The effects of the LRIG2 knockdown were reversed following EGF treatment. These findings suggest that LRIG2 is a potential target for the inhibition of glioma angiogenesis, which is possibly mediated via the EGFR/VEGF-A signaling pathway.

2.
J Ethnopharmacol ; 158 Pt A: 404-11, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25456437

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hedyotis diffusa Willd (Rubiaceae) (HDW) has been widely applied for the treatment of tumors, inflammation and toxication in traditional Chinese medicine. The antitumor effect of HDW on glioblastoma has been rarely reported. We aim to evaluate the activity of this extract and explore the underlying mechanism in U87 human glioblastoma cell line. MATERIALS AND METHODS: Cytotoxicity of HDW extract on U87 cells was measured by MTT assay. Apoptosis, cell cycle arrest and mitochondrial membrane potential (MMP) collapse induced by HDW extract were determined by flow cytometry. Caspase activity was analyzed based on colorimetric assay with a microplate spectrophotometer. Protein expression was examined by Western blot. RESULTS: HDW extract suppressed U87 cells growth in a dose- and time-dependent manner. Flow cytometry showed that HDW extract induced significant apoptosis, S/G2-M phase arrest and MMP collapse in U87 cells. Furthermore, dose-dependent activation of caspase-3, Bcl-2, Bax and ERK was observed with HDW extract treatment. Decreased Bcl-2/Bax ratio and Akt suppression were readily found as well. CONCLUSIONS: Induction of mitochondria-mediated apoptosis played an essential role in antitumor activity of HDW extract in U87 cells, in which ERKs and Akt signaling proteins were also involved. These findings contributed to the feasibility of using HDW extract in glioblastoma treatment and the understanding of the molecular mechanism.


Subject(s)
Apoptosis/drug effects , Brain Neoplasms/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Glioblastoma/pathology , Membrane Potential, Mitochondrial/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rubiaceae/chemistry , Brain Neoplasms/enzymology , Cell Line, Tumor , Flow Cytometry , Glioblastoma/enzymology , Humans , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...