Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 138: 108811, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37169108

ABSTRACT

The cultivation of Chinese Perch (Siniperca chuatsi) in recirculating aquaculture systems (RASs) has become a common trend. To explore the effect of flow velocity on the growth performance, antioxidant activity, immunity and intestinal health of Chinese Perch in RAS, 240 Chinese Perch with an initial weight of 70.66 ± 0.34 g were selected and randomly divided into 4 groups: control group [CK, 0 body length per second (bl/s)], low flow velocity (LF, 0.4 bl/s), middle flow velocity (MF, 0.8 bl/s) and high flow velocity (HF, 1.2 bl/s) for a 56-days experiment. The results showed that the flow velocity significantly increased the weight gain rate and feed intake in Chinese Perch. At 1.2 bl/s, the flow velocity increased the intestinal trypsin content and intestinal villus length. Furthermore, the relative expression of appetite-related genes showed a tendency to increase, and the relative expression of appetite-inhibiting genes had a significant decrease in HF. Regarding immune-related indicators, the activities of alanine aminotransferase (ALT) and aspartate transaminase (AST) were significantly higher in MF and HF. However, the activities of lysozyme (LZM) significantly decreased. Moreover, the activities of total superoxide dismutase (T-SOD) and catalase (CAT) were significantly higher in the CK group than in the other groups. Excessive flow velocity also caused the mRNA level of most immune-relevant genes to markedly decrease. With regard to intestinal health, the intestinal content sequencing results showed that MF could increase the intestinal diversity index of Chinese Perch. In addition, with increasing flow velocity, the relative abundance of Proteobacteria gradually increased, while the proportion of Firmicutes decreased. In conclusion, although the high flow velocity could promote growth, feeding, and digestion, inhibit fat deposition and increase the intestinal microbial abundance, the flow velocity caused stress, which leads to a decline in immunity and increases the death rate and the risk of intestinal disease in Chinese Perch. These findings provide theoretical support for the development of RASs for Chinese Perch.


Subject(s)
Antioxidants , Perches , Animals , Perches/genetics , Aquaculture , Eating , Animal Feed/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...