Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202407481, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840295

ABSTRACT

The design of heterojunctions that mimic natural photosynthetic systems holds great promise for enhancing photoelectric response. However, the limited interfacial space charge layer (SCL) often fails to provide sufficient driving force for the directional migration of inner charge carriers. Drawing inspiration from the electron transport chain (ETC) in natural photosynthesis system, we developed a novel anisotropic dual S-scheme heterojunction artificial photosynthetic system composed of Bi2O3-BiOBr-AgI for the first time, with Bi2O3 and AgI selectively distributed along the bicrystal facets of BiOBr. Compared to traditional semiconductors, the anisotropic carrier migration in BiOBr overcomes the recombination resulting from thermodynamic diffusion, thereby establishing a potential ETC for the directional migration of inner charge carriers. Importantly, this pioneering bioinspired design overcomes the limitations imposed by the limited distribution of SCL in heterojunctions, resulting in a remarkable 55-fold enhancement in photoelectric performance. Leveraging the etching of thiols on Ag-based materials, this dual S-scheme heterojunction is further employed in the construction of photoelectrochemical sensors for the detection of acetylcholinesterase and organophosphorus pesticides.

2.
Talanta ; 275: 126112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677169

ABSTRACT

The development of nanomaterials with multi-enzyme-like activity is crucial for addressing challenges in multi-enzyme-based biosensing systems, including cross-talk between different enzymes and the complexities and costs associated with detection. In this study, Pt nanoparticles (Pt NPs) were successfully supported on a Zr-based metal-organic framework (MOF-808) to create a composite catalyst named MOF-808/Pt NPs. This composite catalyst effectively mimics the functions of acetylcholinesterase (AChE) and peroxidase (POD). Leveraging this capability, we replaced AChE and POD with MOF-808/Pt NPs and constructed a biosensor for sensitive detection of acetylcholine (ACh). The MOF-808/Pt NPs catalyze the hydrolysis of ACh, resulting in the production of acetic acid. The subsequent reduction in pH value further enhances the POD-like activity of the MOFs, enabling signal amplification through the oxidation of a colorimetric substrate. This biosensor capitalizes on pH variations during the reaction to modulate the different enzyme-like activities of the MOFs, simplifying the detection process and eliminating cross-talk between different enzymes. The developed biosensor holds great promise for clinical diagnostic analysis and offers significant application value in the field.


Subject(s)
Acetylcholine , Acetylcholinesterase , Biosensing Techniques , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Biosensing Techniques/methods , Acetylcholine/analysis , Acetylcholine/metabolism , Acetylcholine/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Platinum/chemistry , Metal Nanoparticles/chemistry , Hydrogen-Ion Concentration , Zirconium/chemistry , Biomimetic Materials/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Colorimetry/methods , Catalysis , Limit of Detection
3.
Sci Bull (Beijing) ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38679503

ABSTRACT

The anodic oxygen evolution reaction is a well-acknowledged side reaction in traditional aqueous electrochemiluminescence (ECL) systems due to the generation and surface aggregation of oxygen at the electrode, which detrimentally impacts the stability and efficiency of ECL emission. However, the effect of reactive oxygen species generated during water oxidation on ECL luminophores has been largely overlooked. Taking the typical luminol emitter as an example, herein, we employed NiIr single-atom alloy aerogels possessing efficient water oxidation activity as a prototype co-reaction accelerator to elucidate the relationship between ECL behavior and water oxidation reaction kinetics for the first time. By regulating the concentration of hydroxide ions in the electrolyte, the electrochemical oxidation processes of both luminol and water are finely tuned. When the concentration of hydroxide ions in electrolyte is low, the kinetics of water oxidation is attenuated, which limits the generation of oxygen, effectively mitigates the influence of oxygen accumulation on the ECL strength, and offers a novel perspective for harnessing side reactions in ECL systems. Finally, a sensitive and stable sensor for antioxidant detection was constructed and applied to the practical sample detection.

4.
Nano Lett ; 23(11): 5358-5366, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37265420

ABSTRACT

Accelerating the migration of interfacial carriers in a heterojunction is of paramount importance for driving high-performance photoelectric responses. However, the inferior contact area and large resistance at the interface limit the eventual photoelectric performance. Herein, we fabricated an S-scheme heterojunction involving a 2D/2D dual-metalloporphyrin metal-organic framework with metal-center-regulated CuTCPP(Cu)/CuTCPP(Fe) through electrostatic self-assembly. The ultrathin nanosheet-like architectures reduce the carrier migration distance, while the similar porphyrin backbones promote reasonable interface matching through π-π conjugation, thereby inhibiting the recombination of photogenerated carriers. Furthermore, the metal-center-regulated S-scheme band alignments create a giant built-in electric field, which provides a huge driving force for efficient carrier separation and migration. Coupling with the biomimetic catalytic activity of CuTCPP(Fe), the resultant heterojunction was utilized to construct photoelectrochemical uric acid biosensors. This work provides a general strategy to enhance photoelectric responses by engineering the interfacial structure of heterojunctions.

5.
Angew Chem Int Ed Engl ; 62(19): e202302166, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36883969

ABSTRACT

In conventional luminol electrochemiluminescence (ECL) systems, hydrogen peroxide and dissolved oxygen are employed as typical co-reactants to produce reactive oxygen species (ROS) for efficient ECL emission. However, the self-decomposition of hydrogen peroxide and limited solubility of oxygen in water inevitably restrict the detection accuracy and luminous efficiency of luminol ECL system. Inspired by ROS-mediated ECL mechanism, for the first time, we used cobalt-iron layered double hydroxide as co-reaction accelerator to efficiently activate water to generate ROS for enhancing luminol emission. Experimental investigations verify the formation of hydroxyl and superoxide radicals in the process of electrochemical water oxidation, which subsequently react with luminol anion radicals to trigger strong ECL signals. Finally, the detection of alkaline phosphatase has been successfully achieved with impressive sensitivity and reproducibility for practical sample analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...