Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121541, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35753102

ABSTRACT

A novel ultra-small hydrazone-linked covalent organic polymer (UHCOP) was synthesized based on the Schiff-base reaction between 2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde and 1,4-benzenedicarbohydrazide at room temperature and utilized as a sensitive fluorescent sensor for rapid (<2 min) and selective detection of Fe3+ in aqueous solution. The prepared UHCOP displayed ultra-small size with the diameter of 7.98 ± 0.97 nm and gave a stable fluorescent emission at 510 nm. UHCOP exhibited good sensitivity and highly selectivity towards Fe3+. The coordination interaction between UHCOP and Fe3+ resulted in the obviously aggregation-caused quenching response of UHCOP. The linear range was from 5.0 µM to 1.4 mM (R2 = 0.999) with the detection limit of 2.5 µM. Finally, UHCOP has been successfully applied in the detection of Fe3+ in real water samples, proving the fabricated UHCOP is promising as a sensitive fluorescent sensor for selective detection of Fe3+ in aqueous solution.


Subject(s)
Fluorescent Dyes , Polymers , Hydrazones , Iron , Water
2.
PLoS Negl Trop Dis ; 15(11): e0009869, 2021 11.
Article in English | MEDLINE | ID: mdl-34748586

ABSTRACT

PURPOSE: Vancomycin-resistant enterococci infection is a worrying worldwide clinical problem. To evaluate the accuracy of GeneXpert vanA/vanB in the diagnosis of VRE, we conducted a systematic review in the study. METHODS: Experimental data were extracted from publications until May 03 2021 related to the diagnostic accuracy of GeneXpert vanA/vanB for VRE in PubMed, Embase, Web of Science and the Cochrane Library. The accuracy of GeneXpert vanA/vanB for VRE was evaluated using summary receiver to operate characteristic curve, pooled sensitivity, pooled specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio. RESULTS: 8 publications were divided into 3 groups according to two golden standard references, vanA and vanB group, vanA group, vanB group, including 6 researches, 5 researches and 5 researches, respectively. The pooled sensitivity and specificity of group vanA and vanB were 0.96 (95% CI, 0.93-0.98) and 0.90 (95% CI, 0.88-0.91) respectively. The DOR was 440.77 (95% CI, 37.92-5123.55). The pooled sensitivity and specificity of group vanA were 0.86 (95% CI, 0.81-0.90) and 0.99 (95% CI, 0.99-0.99) respectively, and those of group vanB were 0.85 (95% CI, 0.63-0.97) and 0.82 (95% CI, 0.80-0.83) respectively. CONCLUSION: GeneXpert vanA/vanB can diagnose VRE with high-accuracy and shows greater accuracy in diagnosing vanA.


Subject(s)
Bacterial Proteins/genetics , Carbon-Oxygen Ligases/genetics , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/microbiology , Vancomycin-Resistant Enterococci/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Carbon-Oxygen Ligases/metabolism , Humans , Sensitivity and Specificity , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/classification , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/genetics
3.
Nanoscale ; 10(25): 11861-11868, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29897083

ABSTRACT

Hierarchically porous carbon-supported sulfur material is widely used as a cathode for Li-S batteries because its large surface area and rich porous system provide high sulfur loading, resulting in high specific capacity with stable charge/discharge cycling performance. However, limited attention has been paid to whether the structure of hierarchical porous system affects the final electrochemical performance of Li-S/C batteries. Herein, we present hierarchically structured carbon (WSAC) with varied amounts of mesopores and micropores as a sulfur container for Li-S batteries. It is found that the relationship between electrochemical performance and percentage of microporous volume obeys a volcano distribution, which indicates that the volume percentage of microporous in the meso-microporous structure could be suitably tuned to achieve the desired electrochemical performance. Such S/hierarchically meso-microporous carbon (i.e., WSAC-8) with moderate microporous volume percentage (68.3%) shows high initial specific capacity (1375 mA h g-1) and stable charge/discharge performance (942.6 mA h g-1 after 200 cycles at 0.5C). In particular, WSAC-8 also presented superior capacity behavior at high rate capability, with final capacity as high as 800.1 and 758.7 mA h g-1 for 1C and 2C, respectively.

4.
Dalton Trans ; 41(9): 2639-47, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22222995

ABSTRACT

Hydro- and solvo-thermal reactions of d-block metal ions (Mn(2+), Co(2+), Zn(2+) and Cd(2+)) with monosodium 2-sulfoterephthalate (NaH(2)stp) form six 3D coordination polymers featuring cluster core [M(4)(µ(3)-OH)(2)](6+) in common: [M(2)(µ(3)-OH)(stp)(H(2)O)] (M = Co (1), Mn (2) and Zn (3)), [Zn(2)(µ(3)-OH)(stp)(H(2)O)(2)] (4), [Zn(4)(µ(3)-OH)(2)(stp)(2)(bpy)(2)(H(2)O)]·3.5H(2)O (5) and [Cd(2)(µ(3)-OH)(stp) (bpp)(2)]·H(2)O (6) (stp = 2-sulfoterephthalate, bpy = 4,4'-bipyridine and bpp = 1,3-di(4-pyridyl)propane). All these coordination polymers were characterized by single crystal X-ray diffraction, IR spectroscopy, thermogravimetric and elemental analysis. Complexes 1-3 are isostructural coordination polymers with 3D frameworks based on the chair-like [Zn(4)(µ(3)-OH)(2)](6+) core and the quintuple helixes. In complex 4, there exist double helixes in the 3D framework based on the chair-like cluster cores. Complex 5 possesses a 2-fold interpenetration structure constructed from boat-like cluster core and the bridging ligands stp and bpy. For complex 6, the chair-like cluster cores and stp ligands form a 2D (4,4) network which is further pillared by bpp linkers to a 3D architecture. Magnetic studies indicate that complex 1 exhibits magnetic ordering below 4.9 K with spin canting, and complex 2 shows weak antiferromagnetic coupling between the Mn(II) ions with g = 2.02, J(wb) = -2.88 cm(-1), J(bb) = -0.37 cm(-1). The fluorescence studies show that the emissions of complexes 3-6 are attributed to the ligand π-π* transition.


Subject(s)
Metals, Heavy/chemistry , Phthalic Acids/chemistry , Crystallization , Fluorescence , Magnetics , Molecular Structure , Phthalic Acids/chemical synthesis , Thermogravimetry , X-Ray Diffraction
5.
J Pharm Biomed Anal ; 44(5): 1019-28, 2007 Sep 03.
Article in English | MEDLINE | ID: mdl-17658714

ABSTRACT

A method coupling high-performance liquid chromatography (HPLC) with diode-array detector (DAD) and electrospray ionization mass spectrometry (ESI) was established for the separation and characterization of flavonoids in Sophora flavescens Ait. Based on the chromatographic separation of most flavonoids present in S. flavescens Ait., a total of 24 flavonoids were identified. Fourteen compounds were unambiguously identified comparing experimental data for retention time (t(R)), UV and MS spectra with those of the authentic compounds: 3',7-dihydroxy-4'-methoxy-isoflavone (13), trifolirhizin (14), kurarinol (18), formononetin (19), 7,4'-dihydroxy-5-methoxy-8-(gamma,gamma-dimethylallyl)-flavanone (22), maackiain (21), isoxanthohumol (23), kuraridine (26), kuraridinol (27), sophoraflavanone G (30), xanthohumol (31), isokurarinone (33), kurarinone (35) and kushenol D (38), and additional 10 compounds were tentatively identified as kushenol O (10), trifolirhizin-6''-malonate (15), sophoraisoflavanone A (20), norkurarinol/kosamol Q (24), kushenol I/N (25), kushenol C (28), 2'-methoxykurarinone (29), kosamol R (32), kushecarpin A (34) and kushenol A (37) by comparing experimental data for UV and MS spectra with those of literature. Furthermore, fragmentation pathways in positive ions mode of 24 flavonoid compounds of types of flavanone, flavanonol, flavonol, chalcone, isoflavone, isoflavanone and ptercocarpane were summarized. Some common features, such as CH(3)., H(2)O, CO, CO(2), C(3)O(2) and C(2)H(2)O losses, together with Retro-Diels-Alder fragmentations were observed in the prenylated flavonoids in S. flavescens Ait. The loss of the lanandulyl chain was their characteristic fragmentation, which might help deducing the structure of unknown flavonoid compounds. The present study provided an approach to rapidly characterize bioactive constituents in S. flavescens Ait.


Subject(s)
Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Plant Extracts/analysis , Sophora/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Molecular Structure , Plant Extracts/chemistry , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...