Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Sci Total Environ ; 915: 170093, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38224885

ABSTRACT

Tree stem radial growth could be used to estimate forest productivity, which plays a dominant role in the carbon sink of terrestrial ecosystems. However, it is still obscure how intra-annual stem radial growth is regulated by environmental variables. Here, we monitored Qinghai spruce stem radial growth over seven years and analyzed the environmental drivers of the intra-annual stem radial changes in the Qilian Mountains at low (2700 m) and high altitudes (3200 m). We found that stem radial growth initiated when the daily mean minimum air temperature reached 1.6oC, while the cessation of stem growth was unrelated to temperatures and water conditions. Initiations of stem growth at 2700 m were significantly earlier than that at 3200 m. Maximum growth rates were observed before the summer solstice at low altitude, whereas at high altitude, the majority of them occurred after the summer solstice. Most variability in annual stem increment (AI) can be explained by the rate (Rm) than by the duration of stem growth (∆t), and 78.9 % and 69.6 % of the variability in AI were attributable to Rm for the lower and upper site, respectively. Structural equation modeling revealed that precipitation (P) could both directly positively influence stem radial increment (SRI) and indirectly positively influence SRI through influencing relative humidity (RH), but the positive effect of P on SRI was higher at low altitude than at high altitude. Daily minimum air temperature (Tmin) was also the main direct diver of SRI, and the positive effect of Tmin on SRI was higher at high altitude than at low altitude. Considering the trends in climate warming and humidification over the past decades, climate changes would result in earlier initiation of Qinghai spruce stem growth and promote the growth through positive response to increased precipitation in low altitude and through elevated temperature in high altitude, respectively.

2.
J Environ Manage ; 326(Pt A): 116708, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36356535

ABSTRACT

The increased frequency and intensity of droughts have seriously affected the stability of plantation ecosystems in the Chinese Loess Plateau. Caragana korshinskii Kom. was the dominant afforested shrub species in this region. Evaluating the radial growth of C. korshinskii and its response to drought can provide valuable information for sustainable management of plantations in the context of climate change. In this study, based on 237 shrub C. korshinskii annual ring samples from nine sites in different climate regions, we investigated the response of C. korshinskii radial growth to climate (temperature, precipitation, and monthly resolved standardized precipitation evapotranspiration index (SPEI_01)), and evaluated the differences between them using calculated indices of drought resistance, recovery, and resilience. The results demonstrate that the radial growth of C. korshinskii was mainly limited by drought stress in the previous September in arid regions and in March and June in semi-arid regions, whereas C. korshinskii in semi-humid regions was less influenced by drought stress. Recovery after drought decreased with increasing resistance, and resilience increased significantly with increasing resistance and recovery. Differences in precipitation were found to be the main factor generating variations in shrub resilience; with an increase in precipitation, the recovery and resilience after drought gradually increased. For plantation management, this study suggests that efficient utilization of precipitation resources and site-specific afforestation in different climate and site conditions may help to enhance resilience and improve the ecological service function of plantation forests in the Loess Plateau.


Subject(s)
Caragana , Caragana/physiology , Droughts , Ecosystem , Desert Climate , Climate Change , China
3.
Front Plant Sci ; 13: 862529, 2022.
Article in English | MEDLINE | ID: mdl-35463428

ABSTRACT

Understanding the temporal-spatial variability of tree radial growth and ecological response is the basis for assessing forest vulnerability in sight of climate change. We studied stands of the shrub Caragana korshinskii Kom. at four sampling sites (natural forest CL and plantation forests XZJ, CK and TPX) that spanned the different precipitation gradient (180-415 mm) across China's western Loess Plateau, and demonstrated its radial growth dynamics and ecological response. We found that the growth of natural C. korshinskii in arid regions have adapted and cope with regional environmental changes and radial growth was less affected by drought stress. However, the growth of planted C. korshinskii was significantly affected by drought stress in arid and semi-arid regions, especially during the growing season (from June to September). Variations in radial growth rates and growth indicators such as shrub height, canopy area are consistent with the climate-growth relationship. With increase of precipitation, the limiting of drought on the growth of planted C. korshinskii gradually decreased and the amount of radial growth variation explained by drought decreased from 53.8 to 34.2% and 22.3% from 270 to 399 and 415 mm of precipitation, respectively. The age-related radial growth trend shows that radial growth increased until 4 years of age, then decreased rapidly until 12-14 years of age, and then eventually tend to stabilized. In the context of climate warming and humidification, increased precipitation and regular branch coppicing management at around 12 years old will help to mitigate the limitation of drought on the growth of C. korshinskii. Moreover, the initial planting density should be tailored to local precipitation conditions (below 5,000 shrubs per hectare). The above results have important practical significance for the maintenance of the stability and sustainable management of plantation forests in the western Loess Plateau.

4.
Sci Total Environ ; 688: 361-379, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31233917

ABSTRACT

The water resources in arid and semi-arid regions are critical to providing reliable sources of water for food production and ecosystem functioning. In this study, continuous wavelet transform and wavelet coherence were used to analyse the runoff periodicity and relationship with climate indices, respectively. Additionally, the double mass curve (DMCD), the slope changing ratio of cumulative quantity (SCRCQ) and the Choudhury-Yang equation (Budyko-CY) methods for different potential evapotranspiration data (E0(E0-20 cm, E0-PM, E0-H)) were used to separate the impacts of climate changes and anthropogenic activities on runoff variations. The results demonstrated that the flow regimes in high and low flow seasons were not obvious shifts, and that after implementation of the Ecological Water Diversion Project (EWDP), ecosystems were gradually restored in the downstream portion of the Heihe River Basin (DHRB). Periodicities of 1-7 years and 1-5.8 years were detected in Yingluoxia and Zhengyixia, respectively. Additionally, on a 1-148.2 month timescale, the monthly runoff with AO, NAO, PDO, and AMO had significant resonance periodicity and a 1-48 month Spearman's lag correlation. On the annual and high-flow, climate changes dominant determinant to an increase of runoff for the DMCD and Budyko-CY in period 2, SCRCQ and Budyko-CY in period 3 for different E0 in the upstream (UHRB). In the midstream (MHRB) region, anthropogenic activities played a dominant role in deducing the runoff by the SCRCQ and Budyko-CY methods for different E0 values in period 3. During the low-flow season, the impact of human activities in the UHRB and climate changes in the MHRB was significant for period 2 and 3. Therefore, the impacts of climate change and human activities on runoff changes caused by the introduction of different E0 on different timescales should be fully considered in the future.

5.
Sci Total Environ ; 667: 77-85, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30826683

ABSTRACT

In the context of global precipitation anomalies and climate warming, the evolution of fragile desert ecosystems, which account for one-third of the world's land area, will become more complex. Studies of regional climate change and ecosystem response are important components of global climate change research, especially in arid desert regions. Zygophyllum xanthoxylum and Ammopiptanthus mongolicus are two dominant but endangered shrub species in the Alxa Desert in the arid region of central Asia. Using dendrochronological methods, we studied the response of radial growth of those two species to climate factors, and the adaptability of the two shrub populations under a regional warming trend. We found that radial growth of both shrubs was mainly affected by precipitation during the growing season. In additionally, along with the decrease of precipitation and the increase of temperature from east to west of Alxa desert Plateau, the limiting effect of drought during the growing season on radial growth increased. The climate response characteristics and changes between dry and wet periods exhibited spatial and temporal heterogeneity due to micro-level geomorphological factors. Under a regional climate warming trend, individual growth and population development of the two endangered shrubs will be adversely affected. In areas where these species are naturally distributed, populations will gradually become concentrated in micro-geomorphic regions with better soil moisture conditions, such as low-lying areas in the gullies that develop in alluvial fans. This finding has important scientific significance for understanding the development of the region's dominant shrub populations and protection of these and other endangered plants in arid desert areas.


Subject(s)
Climate Change , Fabaceae/growth & development , Zygophyllum/growth & development , China , Desert Climate , Species Specificity
6.
Environ Monit Assess ; 187(1): 4091, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25427825

ABSTRACT

Changes in the landscape structure of terminal lakes and wetlands along inland rivers in arid areas are determined by the water balance in the river basins under the impacts of climate change and human activities. Studying the evolution of these landscapes and the mechanisms driving these changes is critical to the sustainable development of river basins. The terminal lakes and wetlands along the lower reaches of the Heihe River, an inland river in arid northwestern China, can be grouped into three types: runoff-recharged, groundwater-recharged, and precipitation-recharged. These water-recharge characteristics determine the degree to which the landscape structure of a terminal lake or wetland is impacted by climate change and human activities. An analysis of seven remote-sensing and hydroclimatic data sets for the Heihe River basin during the last 50 years indicates that hydrological changes in the basin caused by regional human activities were the primary drivers of the observed changes in the spatial and temporal landscape-structure patterns of the terminal lakes and wetlands of the Heihe River. In this warm, dry climatic context, the lakes and wetlands gradually evolved toward and maintained a landscape dominated by saline-alkaline lands and grasslands.


Subject(s)
Climate Change , Environmental Monitoring , Rivers/chemistry , Water Movements , Water Supply/statistics & numerical data , Wetlands , China , Climate , Conservation of Natural Resources , Groundwater/chemistry , Human Activities , Humans , Lakes/chemistry
7.
Ground Water ; 50(5): 715-25, 2012.
Article in English | MEDLINE | ID: mdl-22150437

ABSTRACT

There are many viewpoints about the sources of groundwater in the Badain Jaran Desert (BJD), such as precipitation and snowmelt from the Qilian Mountains (the upper reaches [UR] of the Heihe River Basin [HRB]) and precipitation from the BJD and the Yabulai Mountains. To understand the source of the groundwater of the BJD and their possible associations with nearby bodies of water, we analyzed variations of stable isotope ratios (δD and δ(18) O) and the deuterium excess (d-excess) of groundwater and precipitation in the BJD, of groundwater, precipitation, river and spring water in the UR, and of groundwater and river water in the middle and lower reaches (MR and LR) of the HRB. In addition, the climatic condition under which the groundwater was formed in the BJD was also discussed. We found obvious differences in δD, δ(18) O, and d-excess among groundwater in the BJD, nearby water bodies and the HRB. The groundwater δD-δ(18) O equation for the BJD was δD = 4.509δ(18) O-30.620, with a slope and intercept similar to that of nearby areas (4.856 and -29.574), indicating a strong evaporation effect in the BJD and its surrounding areas. The equation's slope of the BJD was significantly lower than those of HRB groundwater (6.634), HRB river water (6.202), precipitation in the BJD and Youqi (7.841), and the UR of the HRB (7.839). The d-excess (-17.5‰) of the BJD was significantly lower than those of nearby groundwater (-7.4‰), HRB groundwater (12.1‰), precipitation in the BJD (5.7‰) and in the UR of the HRB (15.2‰), and HRB river water (14.4‰). The spatial patterns of δ(18) O and d-excess values in the BJD suggest mixing and exchange of groundwater between the BJD and neighboring regions, but no hydraulic relationship between the BJD groundwater and water from more distant regions except Outer Mongolia, which is north of the BJD. Moreover, we conclude that there is little precipitation recharge to groundwater because of the obvious d-excess difference between groundwater and local precipitation, low precipitation, and high evaporation rates. The abnormally negative d-excess values in groundwater of the BJD indicate that this water was formed in the past under higher relative humidity and lower temperatures than modern values.


Subject(s)
Environmental Monitoring/methods , Isotopes/analysis , China , Groundwater/analysis , Water Movements
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 28(4): 708-14, 2011 Aug.
Article in Chinese | MEDLINE | ID: mdl-21936367

ABSTRACT

The risk analysis of clinical claims of mechanical ventilator can provide the useful information to the application of the availability and safety of mechanical ventilators. This paper classifies the clinical claims of two types of mechanical ventilations, and tries to find the distribution characteristics of the failure rate of the clinical claims by using the hazard analysis method. All of the distribution characteristics are related to the factors as ventilator design, environment human factors, etc. The method of risk analysis, combining with the classification of clinical claims, is useful for the clinical application and engineering services of mechanical ventilation.


Subject(s)
Equipment Failure Analysis/statistics & numerical data , Respiration, Artificial/standards , Ventilators, Mechanical/standards , Data Interpretation, Statistical , Humans , Respiration, Artificial/adverse effects , Respiration, Artificial/instrumentation , Risk Assessment , Ventilators, Mechanical/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...