Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Med Chem ; 67(3): 2049-2065, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38284310

ABSTRACT

Human genetic evidence shows that PDE3B is associated with metabolic and dyslipidemia phenotypes. A number of PDE3 family selective inhibitors have been approved by the FDA for various indications; however, given the undesirable proarrhythmic effects in the heart, selectivity for PDE3B inhibition over closely related family members (such as PDE3A; 48% identity) is a critical consideration for development of PDE3B therapeutics. Selectivity for PDE3B over PDE3A may be achieved in a variety of ways, including properties intrinsic to the compound or tissue-selective targeting. The high (>95%) active site homology between PDE3A and B represents a massive obstacle for obtaining selectivity at the active site; however, utilization of libraries with high molecular diversity in high throughput screens may uncover selective chemical matter. Herein, we employed a DNA-encoded library screen to identify PDE3B-selective inhibitors and identified potent and selective boronic acid compounds bound at the active site.


Subject(s)
DNA , Heart , Humans , Catalytic Domain , Cyclic Nucleotide Phosphodiesterases, Type 3
2.
PeerJ ; 9: e11216, 2021.
Article in English | MEDLINE | ID: mdl-33959417

ABSTRACT

Circular RNAs (circRNAs) are a class of newly discovered non-coding RNAs that are typically derived from a genome's exonic, intronic, and intergenic regions. Recent studies of circRNAs in animals and plants have shown that circRNAs are vital in response to various abiotic and biotic stresses. Powdery mildew disease (PM) is a serious fungal disease threatening the melon industry. We performed whole transcriptome sequencing using the leaves of a PM-resistant (M1) and a PM-susceptible (B29) melon to identify circRNAs and determine their molecular functions. A total of 303 circRNAs were identified and >50% circRNAs were derived from exonic regions. Expression levels were significantly altered in 17 and 23 circRNAs after PM infections in B29 and M1, respectively. Melon circRNAs may participate in the response to biotic stimuli, oxidation reduction, metabolic processes, and the regulation of gene expression based on the functional annotation of circRNA parental genes. Furthermore, 27 circRNAs were predicted to be potential targets or 'sponges' for 18 microRNAs (miRNAs). Our results are the first to identify and characterize circRNA functions in melon and may contribute to a better understanding of the role and regulatory mechanisms of circRNAs in resisting PM.

3.
BMC Genomics ; 21(1): 125, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32024461

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with more than 200 nucleotides in length, which play vital roles in a wide range of biological processes. Powdery mildew disease (PM) has become a major threat to the production of melon. To investigate the potential roles of lncRNAs in resisting to PM in melon, it is necessary to identify lncRNAs and uncover their molecular functions. In this study, we compared the lncRNAs between a resistant and a susceptible melon in response to PM infection. RESULTS: It is reported that 11,612 lncRNAs were discovered, which were distributed across all 12 melon chromosomes, and > 85% were from intergenic regions. The melon lncRNAs have shorter transcript lengths and fewer exon numbers than protein-coding genes. In addition, a total of 407 and 611 lncRNAs were found to be differentially expressed after PM infection in PM-susceptible and PM-resistant melons, respectively. Furthermore, 1232 putative targets of differently expressed lncRNAs (DELs) were discovered and gene ontology enrichment (GO) analysis showed that these target genes were mainly enriched in stress-related terms. Consequently, co-expression patterns between LNC_018800 and CmWRKY21, LNC_018062 and MELO3C015771 (glutathione reductase coding gene), LNC_014937 and CmMLO5 were confirmed by qRT-PCR. Moreover, we also identified 24 lncRNAs that act as microRNA (miRNA) precursors, 43 lncRNAs as potential targets of 22 miRNA families and 13 lncRNAs as endogenous target mimics (eTMs) for 11 miRNAs. CONCLUSION: This study shows the first characterization of lncRNAs involved in PM resistance in melon and provides a starting point for further investigation into the functions and regulatory mechanisms of lncRNAs in the resistance to PM.


Subject(s)
Ascomycota , Cucurbitaceae/genetics , Disease Resistance/genetics , Plant Diseases/genetics , RNA, Long Noncoding/metabolism , Cucurbitaceae/anatomy & histology , MicroRNAs/metabolism , Phenotype , Plant Diseases/microbiology , RNA, Long Noncoding/genetics , RNA-Seq , Transcriptome
4.
PLoS One ; 13(12): e0199851, 2018.
Article in English | MEDLINE | ID: mdl-30589839

ABSTRACT

The WRKY proteins constitute a large family of transcription factors that have been known to play a wide range of regulatory roles in multiple biological processes. Over the past few years, many reports have focused on analysis of evolution and biological function of WRKY genes at the whole genome level in different plant species. However, little information is known about WRKY genes in melon (Cucumis melo L.). In the present study, a total of 56 putative WRKY genes were identified in melon, which were randomly distributed on their respective chromosomes. A multiple sequence alignment and phylogenetic analysis using melon, cucumber and watermelon predicted WRKY domains indicated that melon WRKY proteins could be classified into three main groups (I-III). Our analysis indicated that no recent duplication events of WRKY genes were detected in melon, and strong purifying selection was observed among the 85 orthologous pairs of Cucurbitaceae species. Expression profiles of CmWRKY derived from RNA-seq data and quantitative RT-PCR (qRT-PCR) analyses showed distinct expression patterns in various tissues, and the expression of 16 CmWRKY were altered following powdery mildew infection in melon. Besides, we also found that a total of 24 WRKY genes were co-expressed with 11 VQ family genes in melon. Our comparative genomic analysis provides a foundation for future functional dissection and understanding the evolution of WRKY genes in cucurbitaceae species, and will promote powdery mildew resistance study in melon.


Subject(s)
Cucumis melo , Disease Resistance/genetics , Evolution, Molecular , Gene Expression Regulation , Plant Diseases/genetics , Plant Proteins , Transcription Factors , Cucumis melo/genetics , Cucumis melo/metabolism , Genes, Plant , Plant Proteins/biosynthesis , Plant Proteins/genetics , Species Specificity , Transcription Factors/biosynthesis , Transcription Factors/genetics
5.
PLoS One ; 12(7): e0181843, 2017.
Article in English | MEDLINE | ID: mdl-28750081

ABSTRACT

The basic/helix-loop-helix (bHLH) proteins constitute a superfamily of transcription factors that are known to play a range of regulatory roles in eukaryotes. Over the past few decades, many bHLH family genes have been well-characterized in model plants, such as Arabidopsis, rice and tomato. However, the bHLH protein family in peanuts has not yet been systematically identified and characterized. Here, 132 and 129 bHLH proteins were identified from two wild ancestral diploid subgenomes of cultivated tetraploid peanuts, Arachis duranensis (AA) and Arachis ipaensis (BB), respectively. Phylogenetic analysis indicated that these bHLHs could be classified into 19 subfamilies. Distribution mapping results showed that peanut bHLH genes were randomly and unevenly distributed within the 10 AA chromosomes and 10 BB chromosomes. In addition, 120 bHLH gene pairs between the AA-subgenome and BB-subgenome were found to be orthologous and 101 of these pairs were highly syntenic in AA and BB chromosomes. Furthermore, we confirmed that 184 bHLH genes expressed in different tissues, 22 of which exhibited tissue-specific expression. Meanwhile, we identified 61 bHLH genes that may be potentially involved in peanut-specific subterranean. Our comprehensive genomic analysis provides a foundation for future functional dissection and understanding of the regulatory mechanisms of bHLH transcription factors in peanuts.


Subject(s)
Arachis/embryology , Arachis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Genome, Plant , Multigene Family , Seeds/embryology , Seeds/genetics , Amino Acid Motifs , Amino Acid Sequence , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromosomes, Plant/genetics , Cluster Analysis , Conserved Sequence/genetics , DNA, Plant/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genetic Loci , Introns/genetics , Phylogeny , Protein Domains , Sequence Alignment , Sequence Homology, Nucleic Acid , Synteny/genetics
6.
Comb Chem High Throughput Screen ; 16(8): 644-51, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23651141

ABSTRACT

Sentinel assays are a convenient adjunct to LC-MS purity assessment to monitor the integrity of compounds in pharmaceutical screening collections over time. To assess the stability of compounds stored both at room temperature and at -20°C in assay-ready plates that were either vacuum pack-sealed using a convenient industrial vacuum sealing method or individually sealed using conventional foil seals, a diverse collection of ~ 5,000 compounds was assayed using a robust biochemical kinase assay at intervals over a one year period. Assay results at each time point were compared to those of initial assay using a series of correlations of compound Percent of Control (POC) values as well as IC50 values of a subset of compounds in 200 nL or 500 nL plates. The fraction of hits in common between initial assays and assays at later time points ranged from 82% to 95% over one year and remained relatively constant over time with all storage temperatures or sealing methods tested. A majority of the hits that exhibited a consistent gradual trend to lower potency over one year storage were shifted to lower potency upon the rapid removal of DMSO solvent. Compound precipitation rather than compound decomposition is the likely reason for trends to lower potency for most such compounds over the storage period. Plates stored at room temperature featured a significantly higher fraction of hits that exhibited a trend to lower apparent potency than those stored at -20°C suggesting that this lower temperature is preferable for longer-term storage.


Subject(s)
Drug Stability , Drug Storage , Chromatography, Liquid , Dimethyl Sulfoxide/chemistry , Mass Spectrometry , Solvents/chemistry
7.
Structure ; 21(5): 798-809, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23602659

ABSTRACT

Sphingosine kinase 1 (SphK1) is a lipid kinase that catalyzes the conversion of sphingosine to sphingosine-1-phosphate (S1P), which has been shown to play a role in lymphocyte trafficking, angiogenesis, and response to apoptotic stimuli. As a central enzyme in modulating the S1P levels in cells, SphK1 emerges as an important regulator for diverse cellular functions and a potential target for drug discovery. Here, we present the crystal structures of human SphK1 in the apo form and in complexes with a substrate sphingosine-like lipid, ADP, and an inhibitor at 2.0-2.3 Å resolution. The SphK1 structures reveal a two-domain architecture in which its catalytic site is located in the cleft between the two domains and a hydrophobic lipid-binding pocket is buried in the C-terminal domain. Comparative analysis of these structures with mutagenesis and kinetic studies provides insight into how SphK1 recognizes the lipid substrate and catalyzes ATP-dependent phosphorylation.


Subject(s)
Lysophospholipids/chemistry , Sphingosine/analogs & derivatives , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Catalysis , Crystallography, X-Ray , Humans , Kinetics , Lysophospholipids/metabolism , Molecular Sequence Data , Phosphorylation , Protein Conformation , Sphingosine/chemistry , Sphingosine/metabolism , Substrate Specificity
8.
J Med Chem ; 56(10): 4053-70, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23597064

ABSTRACT

Structural analysis of both the MDM2-p53 protein-protein interaction and several small molecules bound to MDM2 led to the design and synthesis of tetrasubstituted morpholinone 10, an MDM2 inhibitor with a biochemical IC50 of 1.0 µM. The cocrystal structure of 10 with MDM2 inspired two independent optimization strategies and resulted in the discovery of morpholinones 16 and 27 possessing distinct binding modes. Both analogues were potent MDM2 inhibitors in biochemical and cellular assays, and morpholinone 27 (IC50 = 0.10 µM) also displayed suitable PK profile for in vivo animal experiments. A pharmacodynamic (PD) experiment in mice implanted with human SJSA-1 tumors showed p21(WAF1) mRNA induction (2.7-fold over vehicle) upon oral dosing of 27 at 300 mg/kg.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Circular Dichroism , Crystallography , Crystallography, X-Ray , Drug Design , Female , Humans , Indicators and Reagents , Mice , Mice, Nude , Models, Molecular , Morpholines/chemical synthesis , Morpholines/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Stereoisomerism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
Bioorg Med Chem Lett ; 23(5): 1238-44, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23374866

ABSTRACT

The discovery, structure-based design, synthesis, and optimization of NIK inhibitors are described. Our work began with an HTS hit, imidazopyridinyl pyrimidinamine 1. We utilized homology modeling and conformational analysis to optimize the indole scaffold leading to the discovery of novel and potent conformationally constrained inhibitors such as compounds 25 and 28. Compounds 25 and 31 were co-crystallized with NIK kinase domain to provide structural insights.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Alkynes/chemical synthesis , Alkynes/chemistry , Alkynes/pharmacology , Amines/chemical synthesis , Amines/chemistry , Amines/pharmacology , Drug Design , HT29 Cells , Humans , Hydrogen Bonding , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , NF-kappaB-Inducing Kinase
11.
Anal Biochem ; 421(2): 368-77, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22056947

ABSTRACT

Protein kinases are recognized as important drug targets due to the pivotal roles they play in human disease. Many kinase inhibitors are ATP competitive, leading to potential problems with poor selectivity and significant loss of potency in vivo due to cellular ATP concentrations being much higher than K(m). Consequently, there has been growing interest in the development of ATP-noncompetitive inhibitors to overcome these problems. There are challenges to identifying ATP-noncompetitive inhibitors from compound library screens because ATP-noncompetitive inhibitors are often weaker and commonly excluded by potency-based hit selection criteria in favor of abundant and highly potent ATP-competitive inhibitors in screening libraries. Here we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for protein kinase cyclin-dependent kinase 4 (CDK4) and the identification of ATP-noncompetitive inhibitors by high-throughput screening after employing a strategy to favor this type of inhibitors. We also present kinetic characterization that is consistent with the proposed mode of inhibition.


Subject(s)
Adenosine Triphosphate/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Fluorescence Resonance Energy Transfer/methods , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Chromatography, High Pressure Liquid , Cyclin-Dependent Kinase 4/metabolism , Humans , Kinetics , Mass Spectrometry , Models, Molecular
12.
Bioorg Med Chem Lett ; 21(8): 2460-7, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21414780

ABSTRACT

We discovered novel pyrrolidine MCHR1 antagonist 1 possessing moderate potency. Profiling of pyrrolidine 1 demonstrated that it was an inhibitor of the hERG channel. Investigation of the structure-activity relationship of this class of pyrrolidines allowed us to optimize the MCHR1 potency and decrease the hERG inhibition. Increasing the acidity of the amide proton by converting the benzamide in lead 1 to an anilide provided single digit nanomolar MCHR1 antagonists while replacing the dimethoxyphenyl ring of 1 with alkyl groups possessing increased polarity dramatically reduced the hERG inhibition.


Subject(s)
Ether-A-Go-Go Potassium Channels/metabolism , Pyrrolidines/chemistry , Receptors, Somatostatin/antagonists & inhibitors , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacology , Receptors, Somatostatin/metabolism , Stereoisomerism , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 21(8): 2492-6, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21392988

ABSTRACT

Starting from a series of ureas that were determined to be mechanism-based inhibitors of FAAH, several spirocyclic ureas and lactams were designed and synthesized. These efforts identified a series of novel, noncovalent FAAH inhibitors with in vitro potency comparable to known covalent FAAH inhibitors. The mechanism of action for these compounds was determined through a combination of SAR and co-crystallography with rat FAAH.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Amidohydrolases/metabolism , Animals , Binding Sites , Computer Simulation , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Humans , Lactams/chemical synthesis , Lactams/chemistry , Lactams/pharmacokinetics , Rats , Spiro Compounds/chemistry , Structure-Activity Relationship , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacokinetics
14.
Bioorg Med Chem Lett ; 18(24): 6352-6, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18993068

ABSTRACT

A new series of pyrazolo[3,4-d]pyrimidine-3,6-diamines was designed and synthesized as potent and selective inhibitors of the nonreceptor tyrosine kinase, ACK1. These compounds arose from efforts to rigidify an earlier series of N-aryl pyrimidine-5-carboxamides. The synthesis and structure-activity relationships of this new series of inhibitors are reported. The most promising compounds were also profiled for their pharmacokinetic properties.


Subject(s)
Diamines/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/chemistry , Pyrimidines/chemistry , Animals , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Drug Design , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Male , Models, Chemical , Molecular Conformation , Protein-Tyrosine Kinases/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
15.
J Biomol Screen ; 13(8): 737-47, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18660457

ABSTRACT

G-protein-coupled receptors (GPCRs) represent one of the largest gene families in the human genome and have long been regarded as valuable targets for small-molecule drugs. The authors describe a new functional assay that directly monitors GPCR activation. It is based on the interaction between beta-arrestin and ligand-activated GPCRs and uses enzyme fragment complementation technology. In this format, a GPCR of interest is fused to a small (approximately 4 kDa), optimized alpha fragment peptide (termed ProLink) derived from beta-galactosidase, and beta-arrestin is fused to an N-terminal deletion mutant of beta-galactosidase (termed the enzyme acceptor [EA]). Upon activation of the receptor, the beta-arrestin-EA fusion protein binds the activated GPCR. This interaction drives enzyme fragment complementation, resulting in an active beta-galactosidase enzyme, and thus GPCR activation can be determined by quantifying beta-galactosidase activity. In this report, the authors demonstrate the utility of this technology to monitor GPCR activation and validate the approach using a Galphai-coupled GPCR, somatostatin receptor 2. Potential application to high-throughput screens in both agonist and antagonist screening modes is exemplified.


Subject(s)
Arrestins/metabolism , Biological Assay/methods , Peptides/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Somatostatin/metabolism , Animals , Arrestins/genetics , Cell Line , Humans , Peptides/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Somatostatin/agonists , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reproducibility of Results , Somatostatin/genetics , Somatostatin/metabolism , beta-Arrestins , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
17.
Comb Chem High Throughput Screen ; 11(3): 195-215, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18336213

ABSTRACT

GPCRs had significant representation in the drug discovery portfolios of most major commercial drug discovery organizations for many years. This is due in part to the diverse biological roles mediated by GPCRs as a class, as well as the empirical discovery that they have proven relatively tractable to the development of small molecule therapeutics. Publication of the human genome sequence in 2001 confirmed GPCRs as the largest single gene superfamily with more than 700 members, furthering the already strong appeal of addressing this target class using efficient and highly parallelized platform approaches. The GPCR research platform implemented at Amgen is used as a case study to review the evolution and implementation of available assays and technologies applicable to GPCR drug discovery. The strengths, weaknesses, and applications of assay technologies applicable to G alpha s, G alpha i and G alpha q-coupled receptors are described and their relative merits evaluated. Particular consideration is made of the role and practice of "de-orphaning" and signaling pathway characterization as a pre-requisite to establishing effective screens. In silico and in vitro methodology developed for rapid, parallel high throughput hit characterization and prioritization is also discussed extensively.


Subject(s)
Drug Evaluation, Preclinical/methods , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Arrestins/analysis , Calcium Signaling/drug effects , Cyclic AMP/analysis , Humans , Ligands , Receptors, G-Protein-Coupled/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Small Molecule Libraries/pharmacology , beta-Arrestins
18.
Anal Biochem ; 376(1): 122-30, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18294446

ABSTRACT

Malonyl-CoA decarboxylase (MCD) catalyzes the conversion of malonyl-CoA to acetyl-CoA and thereby regulates malonyl-CoA levels in cells. Malonyl-CoA is a potent inhibitor of mitochondrial carnitine palmitoyltransferase-1, a key enzyme involved in the mitochondrial uptake of fatty acids for oxidation. Abnormally high rates of fatty acid oxidation contribute to ischemic damage. Inhibition of MCD leads to increased malonyl-CoA and therefore decreases fatty acid oxidation, representing a novel approach for the treatment of ischemic heart injury. The commonly used MCD assay monitors the production of NADH fluorometrically, which is not ideal for library screening due to potential fluorescent interference by certain compounds. Here we report a luminescence assay for MCD activity. This assay is less susceptible to fluorescent interference by compounds. Furthermore, it is 150-fold more sensitive, with a detection limit of 20 nM acetyl-CoA, compared to 3 muM in the fluorescence assay. This assay is also amenable to automation for high-throughput screening and yields excellent assay statistics (Z' > 0.8). In addition, it can be applied to the screening for inhibitors of any other enzymes that generate acetyl-CoA.


Subject(s)
Carboxy-Lyases/analysis , Luminescence , Luminescent Measurements/methods , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Chromatography, High Pressure Liquid/methods , Fluorescence , Humans , Kinetics , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Reproducibility of Results
19.
Anal Biochem ; 367(2): 179-89, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17592719

ABSTRACT

Several drugs inhibiting protein kinases have been launched successfully, demonstrating the attractiveness of protein kinases as therapeutic targets. Functional genomics research within both academia and industry has led to the identification of many more kinases as potential drug targets. Although a number of well-known formats are used for measuring protein kinase activity, some less well-characterized protein kinases identified through functional genomics present particular challenges for existing assay formats when there is limited knowledge of the endogenous substrates or activation mechanisms for these novel kinase targets. This is especially the case when a very sensitive assay is required to differentiate often highly potent inhibitors developed by late-stage medicinal chemistry programs. ACK1 is a non-receptor tyrosine kinase that has been shown to be involved in tumorigenesis and metastasis. Here we describe the development of an extremely sensitive high-throughput assay for ACK1 capable of detecting 240 fmol per well of the kinase reaction product employing a BV-tag-based electrochemiluminescence assay. This assay is universally applicable to protein tyrosine kinases using a BV-tag-labeled monoclonal antibody against phosphotyrosine. Furthermore, this assay can be extended to the evaluation of Ser/Thr kinases in those cases where an antibody recognizing the phospho-product is available.


Subject(s)
Luminescent Measurements/methods , Protein-Tyrosine Kinases/analysis , Antibodies, Monoclonal , Electrochemistry/methods , Kinetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Ruthenium Compounds/chemistry , Sensitivity and Specificity
20.
Comb Chem High Throughput Screen ; 8(2): 181-95, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15777182

ABSTRACT

The pivotal role of kinases in signal transduction and cellular regulation has lent them considerable appeal as pharmacological targets across a broad spectrum of pathologies. Since the discovery that the v-Src oncogene encoded a protein kinase in 1978, kinases have remained a focus of research for pharmaceutical laboratories and academic groups alike. Many have sought to develop orally available low molecular weight synthetic kinase modulators (predominantly inhibitors) and thus capitalize on the links between aberrant regulation and disease. This interest in kinases as drug targets was fueled in recent years by the success of several kinase inhibitors in the clinic, primarily Gleevec for the treatment of chronic myelogenous leukemia and Iressa for the treatment of advanced non-small cell lung cancer. This review focuses on the development of small molecule drugs, most of them binding in or close to the ATP binding pocket. After some general considerations regarding the selection of a particular kinase for drug discovery, we will discuss the encouraging lessons learned from some of the kinase inhibitors currently in various stages of development. The majority of this review is dedicated to a detailed description and discussion of the various assay formats currently being employed for high throughput screening.


Subject(s)
Drug Design , Peptide Library , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Signal Transduction/drug effects , Animals , Avian Sarcoma Viruses/metabolism , Binding Sites , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Lung Neoplasms/pathology , Mass Screening , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...