Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Hazard Mater ; 476: 135207, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39013319

ABSTRACT

The peracetic acid (PAA)-based water purification process is often controlled by the solution pH. Herein, we explored the usage of biochar (BC) supported zero-valent iron/cobalt nanoparticles (Fe/Co@BC) for triggering PAA oxidation of sulfamethazine (SMT), and discovered the PAA activation mechanisms at different pHs. Fe/Co@BC exhibited extraordinary PAA activation efficiency over the pH range of 3.0-8.2, effectively broadening the working pH of the zero-valent iron nanoparticles (NZVI)-PAA process. Specifically, the SMT removal efficiency increased by 8.3 times in Fe/Co@BC-PAA system compared to the NZVI-PAA system at pH 8.2. Besides, the leaching and recycling experiments indicated the improved stability and reusability of the materials. For the mechanism study, the main reactive species was •OH under acidic conditions and R-O•/Fe(IV) under neutral/alkaline conditions. More interestingly, the reactive sites on Fe/Co@BC shifted from Fe species to Co species as pH increased, and the role of H2O2 in this reaction system also shifted from a radical precursor to a radical scavenger with increasing pH. This study highlights the distinct mechanism of PAA activation by bimetallic composites under different pH conditions and provides a new efficient approach for PAA activation to degrade organic contaminants.

2.
Water Res ; 242: 120298, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37413749

ABSTRACT

In this study, a novel water treatment process combining permanganate (Mn(VII)) and peracetic acid (PAA, CH3C(O)OOH) was employed to degrade sulfamethazine (SMT), a typical model contaminant. Simultaneous application of Mn(VII) and a small amount of PAA resulted in much faster oxidation of organics than a single oxidant. Interestingly, coexistent acetic acid played a crucial role in SMT degradation, while background hydrogen peroxide (H2O2) had a negligible effect. However, compared with acetic acid, PAA could better improve the oxidation performance of Mn(VII) and accelerate the removal of SMT more significantly. The mechanism of SMT degradation by Mn(VII)-PAA process was systematically evaluated. Firstly, based on the quenching experiments, electron spin resonance (EPR) results and UV-visible spectrum, singlet oxygen (1O2), Mn(III)aq and MnO2 colloids were the predominant active substances, while organic radicals (R-O•) showed negligible contribution. Then, the decay of Mn(VII) in the presence of PAA and H2O2 was investigated. It was found that the coexisting H2O2 accounted for almost all the decay of Mn(VII), PAA and acetic acid both had low reactivity toward Mn(VII). During the degradation process, acetic acid was able to acidify Mn(VII) and simultaneously acted as a ligand to form reactive complexes, while PAA mainly played a role of spontaneously decomposing to produce 1O2, they jointly promoted the mineralization of SMT. Finally, the degradation intermediates of SMT and their toxicities were analyzed. This paper reported the Mn(VII)-PAA water treatment process for the first time, which provided a promising approach for rapid decontamination of refractory organics-polluted water.


Subject(s)
Oxides , Water Pollutants, Chemical , Manganese Compounds , Peracetic Acid , Sulfamethazine , Hydrogen Peroxide , Oxidation-Reduction , Acetic Acid
3.
J Hazard Mater ; 441: 129895, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36087535

ABSTRACT

In this study, a graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) was prepared and employed for peracetic acid (PAA) activation. The characterization of G@Cu-NPs confirmed that the as-prepared material was composed of Cu0 and Cu2O inside and encapsulated by a graphene shell. Experimental results suggested that the synthesized G@Cu-NPs could activate PAA to generate free radicals for efficiently removing sulfamethazine (SMT) under neutral condition. The formation of graphene shells could strongly facilitated electron transfer from the core to the surface. Radical quenching experiments and electron spin resonance (ESR) analysis confirmed that organic radicals (R-O•) and hydroxyl radicals (•OH) were generated in the G@Cu-NPs/PAA system, and R-O• (including CH3CO3• and CH3CO2•) was the main contributor to the elimination of SMT. The possible SMT degradation pathways and mechanisms were proposed, and the toxicity of SMT and its intermediates was predicted with the quantitative structure-activity relationship (QSAR) analysis. Besides, the effects of some key parameters, common anions, and humic acid (HA) on the removal of SMT in the G@Cu-NPs/PAA system were also investigated. Finally, the applicability of G@Cu-NPs/PAA system was explored, showing that the G@Cu-NPs/PAA system possessed satisfactory adaptability to treat different water bodies with admirable reusability and stability.


Subject(s)
Graphite , Nanoparticles , Water Pollutants, Chemical , Carbon Dioxide , Copper , Humic Substances , Hydrogen Peroxide , Oxidation-Reduction , Peracetic Acid , Sulfamethazine , Water
4.
Environ Pollut ; 313: 120118, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36087891

ABSTRACT

The bacteria toxicity of nanoscale zero-valent iron (nZVI) can be changed during its application in water treatment but the toxicity mechanism is still not well understood, particularly under anaerobic conditions. Here, the toxicity of nZVI and its aging products towards Escherichia coli (E. coli) and the mechanisms of extracellular and intracellular reactive oxygen species (ROS) damage were deeply probed in the presence and absence of oxygen in ultrapure water. Under aerobic conditions, the ROS damage primarily caused by the generation of extracellular free •OH can be a major contributor to the toxicity of nZVI to E. coli. By contrast, in anaerobic nZVI treatment system, the intracellular •OH can be quenched by benzoic acid which is a cell permeable quencher and the electron spin resonance (ESR) signals of 5,5-dimethy-1-pyrroline (DMPO)- •OH were evidently observed in system with the addition of F- which could desorb the surface •OH into solution. It indicated that the intracellular •OH adsorbed on the particle surface can also play an indispensable role in inactivating cells under anaerobic conditions. Moreover, nZVI can steeply decline the membrane potential, causing severe membrane disruption and therefore resulting in the stronger toxicity in anaerobic conditions. Furthermore, the chemical composition transformation of nZVI and generation of benign iron corrosion products (e.g., Fe3O4, γ-Fe2O3, γ-FeOOH) are mainly responsible for the reduced toxicity with the increasing aging time. These results provide insights into the extracellular and intracellular ROS damage occurred in aerobic and anaerobic nZVI treatment systems, offering more perspective to the risk assessment of nZVI application.


Subject(s)
Iron , Water Pollutants, Chemical , Anaerobiosis , Benzoic Acid , Escherichia coli , Iron/chemistry , Iron/toxicity , Oxygen/chemistry , Reactive Oxygen Species , Water Pollutants, Chemical/analysis
5.
Water Res ; 212: 118097, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35081495

ABSTRACT

There are plentiful ways to synthesize sulfidized nanoscale zerovalent iron (S-nZVI), and this study investigated the influence of sulfur reagents (Na2S, Na2S2O3, Na2S2O4) and sulfidation sequence (co-sulfidation and post-sulfidation method) on the physicochemical properties, reactivity, and long-term performance of S-nZVI in simulated groundwater. The results suggested that the co-sulfidized nZVI (S-nZVIco) has higher reactivity (∼2-fold) than S-nZVIpost due to the stronger electron transfer capacity, deriving from the higher content of Fe0 and reductive sulfur species. However, during aging, the reactivity of S-nZVIco would be lost more rapidly than S-nZVIpost, due to the faster corrosion of Fe0 and more oxidation of reductive sulfur species. S-nZVIpost has the superior long-term performance with the degradation rate of trichloroethylene (TCE) remained at 30%∼60% even after 90 d of aging. Sulfur precursors can control the selectivity of S-nZVI by affecting the sulfur speciation on the particle surface. The proportion of reductive sulfur species on S-nZVIpost synthesized by Na2S was higher than S-nZVIpost synthesized by Na2S2O3 or Na2S2O4, resulting in a higher selectivity of the former S-nZVIpost than the latter S-nZVIpost. In addition, sulfidation procedures and sulfur precursors did not affect the degradation pathway of TCE. Nevertheless, the degradation product distribution can be affected by the different physicochemical transformation of various types of S-nZVI with the aging time. These results indicated that sulfur reagents and sulfidation procedures have crucial effects on the reactivity and long-term performance of S-nZVI, which can be designed for the specific application scenarios.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Iron , Sulfur
6.
J Hazard Mater ; 422: 126928, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34449338

ABSTRACT

Biochar (BC) is considered as a promising adsorbent and/or catalyst for the removal of organic contaminants. However, the relationship between the particle size of BC and its adsorption/catalysis performance is largely unclear. We therefore investigated the influence of particle size on the performance of BC pyrolyzed at 300-900 °C in trichloroethylene (TCE) adsorption and persulfate (PS) activation for sulfamethazine (SMT) degradation. The results showed that high-temperature pyrolyzed BC (BC900) presented superior adsorption capacity for TCE and excellent catalytic activity for PS activation to degrade SMT. Compared to 150-250 µm, 75-150 µm and pristine BC900, 0-75 µm BC900 showed the highest TCE adsorption efficiency, which increased by 19.5-62.3%. Similarly, SMT removal by BC900/PS systems also increased from 24.2% to 98.3% with decreasing BC particle size. However, the catalytic activity of BC after grinding was not significantly improved as expected, indicating the properties of biochar was not only controlled by size effect. Characterization measurements proved that small-sized BC tended to have larger specific surface area, more micropores, higher conductivity, rich graphitic domains and surface redox-active functional groups, thus resulting in an enhanced adsorption and catalytic ability of BC.


Subject(s)
Charcoal , Water Pollutants, Chemical , Adsorption , Catalysis , Particle Size , Water Pollutants, Chemical/analysis
7.
Water Res ; 202: 117451, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34330026

ABSTRACT

In this work, the novel application of chalcopyrite (CuFeS2) for sodium percarbonate (SPC) activation towards sulfamethazine (SMT) degradation was explored. Several key influencing factors like SPC concentration, CuFeS2 dosage, reaction temperature, pH value, anions, and humic acid (HA) were investigated. Experimental results indicated that SMT could be effectively degraded in the neutral reaction media by CuFeS2/SPC process (86.4%, 0.054 min-1 at pH = 7.1). The mechanism of SPC activation by CuFeS2 was elucidated, which was discovered to be a multiple reactive oxygen species (multi-ROS) process with the coexistence of hydroxyl radical (•OH), carbonate radical (CO3•-), superoxide radical (O2•-), and singlet oxygen (1O2), as evidenced by quenching experiments and electron spin resonance (ESR) tests. The generated •OH via the traditional heterogeneous Fenton-like process would not only react with carbonate ions to yield other ROS but also involve in SMT degradation. The abundant surface-bound Fe(II) was deemed to be the dominant catalytic active sites for SPC activation. Meanwhile, it was verified that the reductive sulfur species, the interaction between Cu(I) and Fe(III) as well as the available O2•- derived from the activation of molecular oxygen and the conversion of •OH favored the regeneration of Fe(II) on CuFeS2 surface. Furthermore, the degradation intermediates of SMT and their toxicities were evaluated. This study presents a novel strategy by integrating transition metal sulfides with percarbonate for antibiotic-contaminated water treatment.


Subject(s)
Sulfamethazine , Water Pollutants, Chemical , Carbonates , Copper , Ferric Compounds , Hydrogen Peroxide , Oxidation-Reduction , Water Pollutants, Chemical/analysis
8.
Water Res ; 192: 116850, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33513467

ABSTRACT

With the ever-growing water pollution issues, advanced oxidation processes (AOPs) have received growing attention due to their high efficiency in the removal of refractory organic pollutants. Transition metal sulfides (TMSs), with excellent optical, electrical, and catalytical performance, are of great interest as heterogeneous catalysts. These TMSs-based heterogeneous catalysts have been demonstrated to becapable and adaptable in water purification through advanced oxidation processes. The aim of this review is to conduct an exhaustive analysis and summary of recent progress in the application of TMSs-based AOPs for water decontamination. Firstly, the commonly used tuning strategies for TMSs-based catalysts are concisely introduced, including artificial size and shape control, composition control, doping, and heterostructure manufacturing. Then, a comprehensive overview of the current state-of-the-art progress on TMSs-based AOPs (i.e., Fenton-like oxidation, photocatalytic oxidation, and electro chemical oxidation processes) for wastewater treatment is discussed in detail, with an emphasis on their catalytic performance and involved mechanism. In addition, influencing factors of water chemistry, namely, pH, temperature, dissolved oxygen, inorganic species, and natural organic matter on the catalytic performance of established AOPs are analyzed. Furthermore, the reusability and stability of TMSs-based catalysts in these AOPs are also outlined. Finally, current challenges and future perspectives related to TMSs-based catalysts and their applications for AOPs wastewater treatment are proposed. It is expected that this review would shed some light on the future development of TMSs-based AOPs towards water purification.


Subject(s)
Water Pollutants, Chemical , Water Purification , Catalysis , Oxidation-Reduction , Sulfides , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...