Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Phytochemistry ; 219: 113994, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244959

ABSTRACT

Five undescribed compounds, including two cholestane glycosides parispolyosides A and E, and three spirostanol glycosides parispolyosides B-D, were isolated from rhizome of Paris polyphylla var. chinensis (Franch.) Hara, together with twenty-one known steroidal saponins. Their chemical structures were elucidated on the basis of comprehensive analysis of 1D and 2D NMR, as well as HR-ESI-MS spectroscopic data. Two of these compounds demonstrated potent inhibitory effect on NO production stimulated by lipopolysaccharide in raw 264.7 cells with IC50 values of 61.35 µM and 37.23 µM. Four compounds exhibited moderate inhibitory activity against HepG2 cells with IC50 values ranging from 9.43 to 24.54 µM. Molecular docking analysis revealed that the potential mechanism of NO inhibition by the active compounds was associated with the interactions with iNOS protein.


Subject(s)
Antineoplastic Agents , Liliaceae , Saponins , Rhizome/chemistry , Molecular Docking Simulation , Saponins/chemistry , Liliaceae/chemistry , Anti-Inflammatory Agents/pharmacology
2.
Langmuir ; 39(28): 9857-9864, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37427414

ABSTRACT

Titanium dioxide (TiO2) nanoparticles have been extensively used to modify the optical properties of various types of materials. In particular, they have been intensively loaded onto polymer fibers to quench the light reflection. In situ polymerization and online addition are two common strategies for fabricating TiO2-loaded polymer nanocomposite fibers. The former does not require separate preparation of masterbatches as the latter does and therefore has its advantages in terms of decreasing the fabrication steps and economic costs. Moreover, it has been found that in situ-polymerized TiO2-loaded polymer nanocomposite fibers (e.g., TiO2/poly(ethylene terephthalate) fibers) usually have enhanced light-extinction properties over those prepared by the online addition process. Intuitively, there should be a difference in the filler particle dispersion for the two fabrication processes. This hypothesis has not yet been tackled due to the technical difficulty in acquiring the three-dimensional (3D) filler morphology inside the fiber matrix. In this paper, we report a study using the powerful focused ion beam-scanning electron microscopy (FIB-SEM) with a resolution of 20 nm to directly acquire the 3D microstructure of TiO2/poly(ethylene terephthalate) nanocomposite (TiO2/PET) fibers. This microscopy technique allows us to characterize the particle size statistics and the dispersion inside TiO2/PET fibers. We have found that the particle size of TiO2 inside the fiber matrix can be well modeled by Weibull statistics. Surprisingly, we find that TiO2 nanoparticles form more significant agglomeration in the in situ-polymerized TiO2/PET fibers. This observation is contrary to our common understanding of the two fabrication processes. Namely, slightly altering the particle dispersion with increased TiO2 filler size helps improve the light-extinction properties. The slightly increased filler size may have altered the Mie scattering between the nanoparticles and the incident visible light, leading to enhanced light-extinction properties of in situ-polymerized TiO2/PET nanocomposite fibers.

3.
Front Nutr ; 9: 961301, 2022.
Article in English | MEDLINE | ID: mdl-36118749

ABSTRACT

Water-soluble tomato concentrate (WSTC), extracted from mature tomatoes, is the first health product in Europe that has been approved "to help maintain normal platelet activity to maintain healthy blood flow." We hypothesized that WSTC might exert an influence on blood flow shear stress-induced platelet aggregation (SIPA) and in turn maintains healthy blood flow. We used a microfluidic system to measure the effects of WSTC on SIPA in vitro. We also used the strenuous exercise rat model and the κ-carrageenan-induced rat tail thrombosis model to demonstrate the effects of WSTC on blood flow. WSTC significantly inhibited platelet aggregation at pathological high shear rate of 4,000 s-1 and 8,000 s-1 in vitro (P < 0.05 or P < 0.01). WSTC reduced the platelet adhesion rate and increased the rolling speed of platelets by inhibiting binding to Von Willebrand Factor (vWF) (P < 0.05 or P < 0.01). The oral administration of WSTC for 4 weeks in strenuous exercise rats alleviated hyper-reactivity of the platelets and led to a significant reduction in the plasma levels of catecholamine and IL-6. WSTC treatment also led to a reduction in black tail length, reduced blood flow pulse index (PI) and vascular resistance index (RI), and ameliorated local microcirculation perfusion in a rat model of thrombosis. WSTC exerted obvious inhibitory effects on the platelet aggregation induced by shear flow and alleviated the blood flow and microcirculation abnormities induced by an inflammatory reaction.

4.
Front Pharmacol ; 13: 891889, 2022.
Article in English | MEDLINE | ID: mdl-35873580

ABSTRACT

Qing-Jin-Hua-Tan-Decoction (QJHTD), a classic famous Chinese ancient prescription, has been used for treatment of pulmonary diseases since Ming Dynasty. A total of 22 prototype compounds of QJHTD absorbed into rat blood were chosen as candidates for the pharmacological network analysis and molecular docking. The targets from the intersection of compound target and ALI disease targets were used for GO and KEGG enrichment analyses. Molecular docking was adopted to further verify the interactions between 22 components and the top 20 targets with higher degree values in the component-target-pathway network. In vitro experiments were performed to verify the results of network pharmacology using SPR experiments, Western blot experiments, and the PMA-induced neutrophils to produce neutrophil extracellular trap (NET) model. The compound-target-pathway network includes 176 targets and 20 signaling pathways in which the degree of MAPK14, CDK2, EGFR, F2, SRC, and AKT1 is higher than that of other targets and which may be potential disease targets. The biological processes in QJHTD for ALI mainly included protein phosphorylation, response to wounding, response to bacterium, regulation of inflammatory response, and so on. KEGG enrichment analyses revealed multiple signaling pathways, including lipid and atherosclerosis, HIF-1 signaling pathway, renin-angiotensin system, and neutrophil extracellular trap formation. The molecular docking results showed that baicalin, oroxylin A-7-glucuronide, hispidulin-7-O-ß-D-glucuronide, wogonoside, baicalein, wogonin, tianshic acid, and mangiferin can be combined with most of the targets, which might be the core components of QJHTD in treatment of ALI. Direct binding ability of baicalein, wogonin, and baicalin to thrombin protein was all micromolar, and their KD values were 11.92 µM, 1.303 µM, and 1.146 µM, respectively, revealed by SPR experiments, and QJHTD could inhibit Src phosphorylation in LPS-activated neutrophils by Western blot experiments. The experimental results of PMA-induced neutrophils to produce NETs indicated that QJHTD could inhibit the production of NETs. This study revealed the active compounds, effective targets, and potential pharmacological mechanisms of QJHTD acting on ALI.

5.
Zhongguo Zhong Yao Za Zhi ; 46(19): 4907-4921, 2021 Oct.
Article in Chinese | MEDLINE | ID: mdl-34738384

ABSTRACT

Platelet function tests have been increasingly used to assist in the diagnosis of platelet disorders and prethrombotic state, monitoring of the efficacy of antiplatelet therapies, and personalized treatment. On the basis of light transmission aggregometry, new methods for platelet function test have been developed successively. At present, the research and development of platelet function detector is in its infancy in China. The active constituents of antiplatelet Chinese medicines can be classified into terpenoids, flavonoids, saponins, organic acids, lignans, diketones, volatile oils, and stilbenes. The results of dose-antiplatelet effect relationship of Chinese medicines and the active constituents showed that the effective concentration of the extracts or monomers of Chinese medicines was at micromolar level(µmol·L~(-1)), among which salvianolic acid B and ginkgolide K, ginkgolide B, and ginkgolide A had the strongest antiplatelet effect. These results suggest that the antiplatelet effect of Chinese medicine may be weaker than that of chemical drugs and biological products. Therefore, it is necessary to explore the structure-activity relationship of the active constituents in existing Chinese medicines and further improve their efficacy through structure modification. The antiplatelet effect of Chinese medicines and the constituents involves multiple pathways and multiple targets. These research results provide a reference for clinical application of them. However, there is still a lack of large-scale multi-center clinical trials to confirm the efficacy and safety of them. The regularity of the relationship between the structures of various constituents and their corresponding functions is still unknown and the relevant signal transduction pathways and structure-activity relationship need to be further studied. This paper summarized and analyzed the determination methods of platelet functions and the research results of antiplatelet Chinese medicines, which is of reference value for the research of effective and safe antiplatelet Chinese medicines.


Subject(s)
Biological Products , Medicine, East Asian Traditional , China , Platelet Aggregation Inhibitors/pharmacology , Platelet Function Tests
6.
Front Pharmacol ; 12: 606245, 2021.
Article in English | MEDLINE | ID: mdl-33841141

ABSTRACT

XueShuanTong (XST) comprising therapeutically active ginsenosides, a lyophilized extract of Panax notoginseng roots, is extensively used in traditional Chinese medicine to treat ischemic heart and cerebrovascular diseases. Our recent study shows that treatment with XST inhibits shear-induced thrombosis formation but the underlying mechanism remained unclear. This study aimed to investigate the hypothesis that XST inhibited shear-induced platelet aggregation via targeting the mechanosensitive Ca2+-permeable Piezo1 channel by performing platelet aggregation assay, Ca2+ imaging and Western blotting analysis. Exposure to shear at physiologically (1,000-2000 s-1) and pathologically related rates (4,000-6,000 s-1) induced platelet aggregation that was inhibited by treatment with GsMTx-4. Exposure to shear evoked robust Ca2+ responses in platelets that were inhibited by treatment with GsMTx-4 and conversely enhanced by treatment with Yoda1. Treatment with XST at a clinically relevant concentration (0.15 g L-1) potently inhibited shear-induced Ca2+ responses and platelet aggregation, without altering vWF-mediated platelet adhesion and rolling. Exposure to shear, while resulting in no effect on the calpain-2 expression in platelets, induced calpain-2-mediated cleavage of talin1 protein, which is known to be critical for platelet activation. Shear-induced activation of calpain-2 and cleavage of talin1 were attenuated by treatment with XST. Taken together, our results suggest that XST inhibits shear-induced platelet aggregation via targeting the Piezo1 channel to prevent Piezo1-mediated Ca2+ signaling and downstream calpain-2 and talin1 signal pathway, thus providing novel insights into the mechanism of the therapeutic action of XST on platelet aggregation and thrombosis formation.

7.
Curr Drug Metab ; 21(12): 960-968, 2020.
Article in English | MEDLINE | ID: mdl-32682364

ABSTRACT

BACKGROUND: Anthraquinones, rhein and aurantio-obtusin were isolated from the herb Duhaldea nervosa for the first time by our group, which were also found in plants that belong to the plant family Compositae. Anthraquinone compounds have a range of pharmacological activities such as anti-inflammatory, anti-cancer, antioxidation, anti-diabetes, etc. and can be used as a laxative, for liver protection, treatment of chronic renal failure, etc. However, in recent years, anthraquinones have been reported to be cytotoxic to the liver and kidneys. Therefore, it is very important to study the pharmacokinetics and metabolism of rhein and aurantio-obtusin, which are common ingredients in many traditional Chinese medicines (TCM). According to our research, the pharmacokinetics and metabolism of rhein and aurantio-obtusin are comprehensively summarized in the paper for the first time. OBJECTIVE: The study provides comprehensive information on pharmacokinetics and metabolism of rhein and aurantio- obtusin in different Species; meanwhile, the aim of this review is also to provide a reference for a reasonable application of TCM enriched with these two ingredients. METHODS: The metabolism and pharmacokinetics of rhein and aurantio-obtusin were searched by the Web of Science, PubMed, Google scholar and some Chinese literature databases. RESULTS: Rhein and aurantio-obtusin exist mainly in the form of metabolites in the body. Rhein and aurantio-obtusin and its metabolites might be responsible for pharmacological effects in the body. Therefore, the significance of studying the in vivo metabolites of rhein and aurantio-obtusin is not only essential to clarify their pharmacological mechanism, but also to find new active compound ingredients. The metabolism of rhein is different in different species, so the toxicity effects of rhein may also be different after oral administration in different species; however, the metabolic profiles of aurantio-obtusin in the liver microsomes of different species are similar. CONCLUSION: This paper not only provides detail regarding the pharmacokinetics of rhein and aurantio-obtusin, but it is anticipated that it will also facilitate further study on the metabolism of rhein and aurantio-obtusin.


Subject(s)
Anthraquinones/pharmacokinetics , Animals , Humans , Medicine, Chinese Traditional
SELECTION OF CITATIONS
SEARCH DETAIL
...