Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Environ Toxicol ; 39(6): 3537-3547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38469959

ABSTRACT

The antioxidant properties of crocin are attracting interest, yet the underlying mechanisms by which crocin mitigates oxidative stress-induced intestinal damage have not been determined. This study aimed to elucidate the effects of crocin on oxidative stress, apoptosis, and intestinal epithelial injury in intestinal epithelial cells (IPEC-J2). Using an H2O2-induced oxidative stress model in IPEC-J2 cells, crocin was added to assess its effects. Cell viability and apoptosis were evaluated using methyl thiazolyl tetrazolium assays and flow cytometry. Additionally, oxidative stress markers, such as superoxide dismutase (SOD), catalase (CAT), reactive oxygen species (ROS), and malondialdehyde (MDA), were quantified. We investigated, in which cell oxidation and apoptosis were measured at the gene and protein levels and employed transcriptome analysis to probe the mechanism of action and validate relevant pathways. The results showed that crocin ameliorates H2O2-induced oxidative stress by reducing ROS and MDA levels and by countering the reductions in CAT, total antioxidant capacity, and SOD. Crocin also attenuates the upregulation of key targets in the Nrf2 pathway. Furthermore, it effectively mitigated IPEC-J2 cell apoptosis caused by oxidative stress, as evidenced by changes in cell cycle factor expression, apoptosis rate, mitochondrial membrane potential, and apoptosis pathway activity. In addition, crocin preserves the integrity of the intestinal barrier by protecting tight junction proteins against oxidative stress. Transcriptome sequencing analysis suggested that the mitochondrial pathway may be a crucial mechanism through which crocin exerts its protective effects. In summary, crocin decreases oxidative stress molecule formation, inhibits Nrf2 pathway activity, prevents apoptosis-induced damage, enhances oxidative stress resistance in IPEC-J2 cells, and maintains redox balance in the pig intestine.


Subject(s)
Antioxidants , Apoptosis , Carotenoids , Hydrogen Peroxide , Oxidative Stress , Reactive Oxygen Species , Carotenoids/pharmacology , Oxidative Stress/drug effects , Apoptosis/drug effects , Animals , Cell Line , Hydrogen Peroxide/toxicity , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Swine , Cell Survival/drug effects , Epithelial Cells/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Malondialdehyde/metabolism , Membrane Potential, Mitochondrial/drug effects
2.
Poult Sci ; 103(1): 103191, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980740

ABSTRACT

The coloration of plumage in poultry species has substantial economic significance. Putian black ducks encompass 2 distinct strains characterized by black and white plumage variations resulting from selective breeding. This study aimed to identify the molecular mechanisms responsible for plumage coloration in these 2 distinct strains. A comprehensive genome-wide association study was conducted using DNA data sourced from a F2 segregating population, consisting of 71 individuals with black plumage and 39 individuals with white plumage, derived from these distinct 2 strains. This analysis revealed that 894 nucleotide polymorphisms and identified 58 candidate genes. Subsequent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes coenrichment analyses identified MITF as a key candidate gene implicated in melanin biosynthesis. Furthermore, extensive screening of significant polymorphic loci within MITF was carried out via mass spectrometry in 3 distinct populations: 100 individuals with black plumage and 100 individuals with white plumage from the F0 generation; and 50 with black plumage form the F1 generation). Eighteen candidate polymorphic loci were identified demonstrating significant associations with variations in black and white plumage. Notably, 8 of these loci were located within the 2,000 bp region upstream of MITF-M. To validate the critical regulatory role of MITF-M in black and white plumage formation, a dual-fluorescence reporter system was constructed, and dual-fluorescence activity was assessed. The results revealed that the fluorescence activity at wild-type sites (corresponding to black plumage) was significantly higher than that at the mutant-type sites (associated with white plumage) (P < 0.01). To corroborate the pivotal role of MITF-M in black and white plumage formation, qPCR was employed to evaluate the expression levels of various MITF variants in black and white feather bulbs. This analysis demonstrated that only MITF-M exhibited specific expression in black feather bulbs. These results elucidate the central role of polymorphic mutations within the MITF promoter region in the regulation of black and white plumage coloration in Putian black ducks. This study extends our understanding of mechanisms governing duck plumage coloration and provides valuable molecular markers for future research in duck production and breeding based on plumage coloration.


Subject(s)
Ducks , Melanins , Humans , Animals , Ducks/genetics , Melanins/genetics , Genome-Wide Association Study/veterinary , Chickens/physiology , Plant Breeding , Feathers/chemistry , Promoter Regions, Genetic , Mutation , Pigmentation/genetics , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/analysis
3.
Front Physiol ; 14: 1261204, 2023.
Article in English | MEDLINE | ID: mdl-37920803

ABSTRACT

Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.

4.
Front Physiol ; 14: 1110926, 2023.
Article in English | MEDLINE | ID: mdl-37555019

ABSTRACT

The detrimental impact of obesity on human health is increasingly evident with the rise in obesity-related diseases. Skeletal muscle, the crucial organ responsible for energy balance metabolism, plays a significant role as a secretory organ by releasing various myokines. Among these myokines, interleukin 6 (IL-6) is closely associated with skeletal muscle contraction. IL-6 triggers the process of lipolysis by mobilizing energy-storing adipose tissue, thereby providing energy for physical exercise. This phenomenon also elucidates the health benefits of regular exercise. However, skeletal muscle and adipose tissue maintain a constant interaction, both directly and indirectly. Direct interaction occurs through the accumulation of excess fat within skeletal muscle, known as ectopic fat deposition. Indirect interaction takes place when adipose tissue is mobilized to supply the energy for skeletal muscle during exercise. Consequently, maintaining a functional balance between skeletal muscle and adipose tissue becomes paramount in regulating energy metabolism and promoting overall health. IL-6, as a representative cytokine, participates in various inflammatory responses, including non-classical inflammatory responses such as adipogenesis. Skeletal muscle influences adipogenesis through paracrine mechanisms, primarily by secreting IL-6. In this research paper, we aim to review the role of skeletal muscle-derived IL-6 in lipid metabolism and other physiological activities, such as insulin resistance and glucose tolerance. By doing so, we provide valuable insights into the regulatory function of skeletal muscle-derived myokines in lipid metabolism.

5.
Genes (Basel) ; 14(3)2023 03 20.
Article in English | MEDLINE | ID: mdl-36981023

ABSTRACT

Owing to the inherent heterogeneity and plasticity of fibroblasts, they are considered as the conventional biological resources for basic and clinical medical research. Thus, it is essential to generate knowledge about the establishment of fibroblast cultures and the effects of cryopreservation processes on their biological characteristics. Since the pig (Sus scrofa) possesses numerous genetic, physiological, and anatomical similarities with humans, porcine fibroblasts are naturally regarded as useful analogues of human fibroblasts. Nonetheless, less attention has been given to the alterations in viability and gene expression of cryopreserved porcine fibroblasts. In this study, we aimed to obtain fibroblasts from porcine ear skin and evaluate the effects of cryopreservation on the cell survival, proliferation, and gene expression profiles of the fibroblasts by trypan-blue-staining assay, Cell Counting kit-8 (CCK-8) assay, and RNA-sequencing analysis, respectively. Our results suggested that morphologically stable fibroblast cultures can be constructed from pig-ear skin. The post-thaw survival rate of the cryopreserved fibroblasts at 0 h and 24 h was over 90%. The proliferative activity of the cryopreserved fibroblasts was similar to that of the non-cryopreserved fibroblasts after 7 days of in vitro culture, which suggested that cryopreservation did not influence the viability. The RNA-sequencing analysis indicated that this should be attributed to the 867 differentially expressed genes (DGEs) identified, which are involved in molecular process related to cell recovery and survival after cryo-stimulation. In addition, eight important DEGs BMP2, GDF15, EREG, AREG, HBEGF, LIF, IL-6, and HOX-7 could potentially be applied to improve the efficiency of fibroblast cryopreservation, but comprehensive and systematic studies on understanding the underlying mechanisms responsible for their modulatory roles are urgently needed.


Subject(s)
Cryopreservation , Skin , Humans , Swine , Cryopreservation/methods , Fibroblasts/metabolism , Gene Expression , RNA/metabolism , Animals
6.
Anim Biotechnol ; 34(9): 4547-4552, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36651576

ABSTRACT

NLR family pyrin domain containing 9 (NLRP9) is a mammalian reproduction-related gene. In this study, we researched the associations between polymorphisms located in the coding sequence (CDS) of the NLRP9 gene, and both the total number of piglets born per litter (TNB) and the number of piglets born alive per litter (NBA) in Canada Large White pigs (CLW). We detected a single nucleotide polymorphism (SNP) within exon 3 (g.10910C > T). The allele frequencies at the NLRP9 locus were 0.474 for the C allele and 0.526 for the T allele. Three genotypes, CC, CT, and TT, occurred with frequencies of 0.216, 0.515, and 0.269, respectively. Sows with the CC genotype had the largest TNB and NBA, sows with TT had the smallest, and those with CT were in-between. This difference was statistically significant (p < 0.05). Furthermore, CC females grew faster than CT or TT females, and there was a significant relationship between NLRP9 polymorphism and the average daily gain (p < 0.05). Here, we provide the first evidence for a novel SNP in NLRP9 associated with litter size in CLW sows, which could be used as a genetic marker to improve litter size in pig breeding and production.


Subject(s)
Polymorphism, Single Nucleotide , Pyrin Domain , Pregnancy , Swine/genetics , Animals , Female , Litter Size/genetics , Polymorphism, Single Nucleotide/genetics , Gene Frequency , Genotype , Mammals
7.
Animals (Basel) ; 12(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36078022

ABSTRACT

The assessment of population genetic structure is the basis for understanding the genetic information of indigenous breeds and is important for the protection and management of indigenous breeds. However, the population genetic differentiation of many local breeds still remains unclear. Here, we performed a genome-wide comparative analysis of Jinding, Liancheng white, Putian black, and Shanma ducks based on the genomic sequences using RAD sequencing to understand their population structure and genetic diversity. The population parameters showed that there were obvious genetic differences among the four indigenous breeds, which were separated groups. Among them, Liancheng white and Shanma ducks may come from the same ancestor because the phylogenetic tree forms three tree trunks. In addition, during the runs of homozygosity (ROH), we found that the average inbreeding coefficient of Liancheng white and Putian black ducks was the lowest and the highest, respectively. Five genomic regions were considered to be the hotspots of autozygosity among these indigenous duck breeds, and the candidate genes involved a variety of potential variations, such as muscle growth, pigmentation, and neuroregulation. These findings provide insights into the further improvement and conservation of Fujian duck breeds.

8.
Front Vet Sci ; 9: 904886, 2022.
Article in English | MEDLINE | ID: mdl-35754532

ABSTRACT

Liquid preservation of boar sperm is crucial for artificial insemination application in pig production. However, time-dependent oxidative damage to sperm is one of the major challenges during the liquid preservation period. Caffeic acid phenethyl ester (CAPE) possesses excellent antioxidant properties and has potential therapeutic use in reproductive organ injury linked to oxidative stress. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) involves in modulating the cellular redox state and exerts a beneficial effect on sperm preservation. In the present study, we firstly assessed different concentrations of CAPE that affect sperm quality during liquid storage to determine the appropriate addition. To further investigate whether CAPE exerts protective effects on boar sperm through modulation of AMPK activity, sperm quality parameters, antioxidant capacity, and marker protein expressions were evaluated under co-incubation with H2O2. The results showed that sperm treated with 210 µmol/L CAPE exhibited the highest motion parameters (total motility and progressive motility) and best functional integrity (mitochondrial activity, plasma membrane integrity, and acrosomal integrity). Even in the presence of H2O2, the addition of 210 µmol/L CAPE not only significantly improved sperm quality parameters, but also elevated CAT, SOD, and GSH-Px activities to enhance sperm antioxidant capacity. In addition, we found that CAPE could affect the protein activities of AMPK, phospho-AMPK α (p-AMPK), SOD, and Caspase-3 regardless of whether H2O2 is present or not. Our findings suggested that CAPE has potential application in liquid preservation of boar sperm and preliminary indicated that CAPE-induced improvement of sperm quality and antioxidant capacity should be mediated through conservation of AMPK activity. Further studies are required to illustrate the specific mechanism by which CAPE attenuates oxidative stress-mediated damages dependent on AMPK activity.

9.
Biomed Res Int ; 2021: 5573237, 2021.
Article in English | MEDLINE | ID: mdl-34189137

ABSTRACT

In the present study, we hypothesized that buckwheat honey (BH) should be regarded as a potential alternative to antibacterial and antioxidant agent in liquid storage of boar semen. To this end, boar semen was firstly studied for in vitro dose tolerability to BH by measuring sperm progressive motility. The optimum progressive motility of boar spermatozoa was observed in extender with 0.5% and 0.6% BH addition. Afterward, sperm quality parameters, bacterial profile and composition, total antioxidant (T-AOC), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels of control, BH supplementation, antibiotics supplementation, and incorporated supplementation were compared during liquid storage period, to further investigate antibacterial and antioxidant properties of BH. The results showed that BH supplementation significantly improved sperm motility, acrosome integrity, plasma membrane integrity, inhibited opportunistic bacterial growth, and altered microbial compositions at the end of preservation. Additionally, T-AOC, SOD, and CAT levels were significantly higher in the BH supplementation group than those in the control and antibiotic supplementation group, whereas MDA level exhibited opposite change pattern. Importantly, BH addition to the extender was able to exert a synergistic effect in combination of antibiotic use. Our findings suggested that the appropriate concentrations (0.5% and 0.6%) of BH were added to the extender could act antibacterial and antioxidant roles in liquid preservation of boar semen.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Semen Preservation/instrumentation , Semen Preservation/methods , Semen/metabolism , Acrosome Reaction , Animal Husbandry , Animals , Antioxidants/metabolism , Catalase/metabolism , Cell Membrane/metabolism , Honey , Male , Malondialdehyde/metabolism , Sample Size , Semen Analysis , Sperm Motility , Spermatozoa/metabolism , Spermatozoa/physiology , Superoxide Dismutase/metabolism , Sus scrofa
10.
BMC Microbiol ; 20(1): 116, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32410629

ABSTRACT

BACKGROUND: The mammalian intestinal tract harbors diverse and dynamic microbial communities that play pivotal roles in host health, metabolism, immunity, and development. Average daily gain (ADG) is an important growth trait in meat rabbit industry. The effects of gut microbiota on ADG in meat rabbits are still unknown. RESULTS: In this study, we investigated the dynamic distribution of gut microbiota in commercial Ira rabbits from weaning to finishing and uncover the relationship between the microbiota and average daily gain (ADG) via 16S rRNA gene sequencing. The results indicated that the richness and diversity of gut microbiota significantly increased with age. Gut microbial structure was less variable among finishing rabbits than among weaning rabbits. The relative abundances of the dominant phyla Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria, and the 15 predominant genera significantly varied with age. Metagenomic prediction analysis showed that both KOs and KEGG pathways related to the metabolism of monosaccharides and vitamins were enriched in the weaning rabbits, while those related to the metabolism of amino acids and polysaccharides were more abundant in the finishing rabbits. We identified 34 OTUs, 125 KOs, and 25 KEGG pathways that were significantly associated with ADG. OTUs annotation suggested that butyrate producing bacteria belong to the family Ruminococcaceae and Bacteroidales_S24-7_group were positively associated with ADG. Conversely, Eubacterium_coprostanoligenes_group, Christensenellaceae_R-7_group, and opportunistic pathogens were negatively associated with ADG. Both KOs and KEGG pathways correlated with the metabolism of vitamins, basic amino acids, and short chain fatty acids (SCFAs) showed positive correlations with ADG, while those correlated with aromatic amino acids metabolism and immune response exhibited negative correlations with ADG. In addition, our results suggested that 10.42% of the variation in weaning weight could be explained by the gut microbiome. CONCLUSIONS: Our findings give a glimpse into the dynamic shifts in gut microbiota of meat rabbits and provide a theoretical basis for gut microbiota modulation to improve ADG in the meat rabbit industry.


Subject(s)
Bacteria/classification , Meat/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Animals , Bacteria/genetics , Bacteria/isolation & purification , Body Weight , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Feces/microbiology , Gastrointestinal Microbiome , Phylogeny , Rabbits , Weaning
11.
Biomed Res Int ; 2019: 8512467, 2019.
Article in English | MEDLINE | ID: mdl-31662999

ABSTRACT

Microphthalmia-associated transcription factor (MITF) is a key regulator for the development and function of melanocytes in skin, eye, and plumage pigmentations. Thus, the MITF was selected as a candidate gene associated with plumage coloration in ducks. This study analyzed the mRNA expression, promoter methylation, and polymorphisms in the MITF gene in ducks with different plumage colors (Putian Black, Putian White, Liancheng White, and Longsheng Jade-green). No expression of the MITF melanin-specific isoform (MITF-M) was detected in white feather bulbs. By contrast, the mRNA expression levels of MITF-M were high in black feather bulbs. Bioinformatics analysis showed that two CpG islands were present in the promoter region of the MITF gene. The methylation level of the second CpG island was significantly lower in black feather bulbs than in white feather bulbs. However, the methylation level of the first CpG island was not different among the feather bulbs with various colors except Liancheng White feather bulbs. The methylation status of the whole CpG island significantly and negatively correlated with the mRNA expression of MITF-M (P < 0.05). Furthermore, four novel SNPs (single nucleotide polymorphisms) were identified in the 5'UTR, exon 4, intron 7, and intron 8 of the MITF gene. Allele T in g.39807T>G and allele G in g.40862G>A were the predominant alleles only found in Putian White, whereas the variant A allele in g.32813G>A exhibited a high allele frequency in Liancheng White. Collectively, these results contributed to the understanding of the function of the MITF gene in duck plumage coloration.


Subject(s)
Avian Proteins/genetics , CpG Islands/genetics , Ducks/genetics , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , Alleles , Animals , Gene Frequency/genetics , Introns/genetics , Melanins/genetics , Melanocytes/metabolism , Methylation , Pigmentation/genetics , Promoter Regions, Genetic/genetics
12.
Microb Biotechnol ; 12(6): 1441-1452, 2019 11.
Article in English | MEDLINE | ID: mdl-31571427

ABSTRACT

Weaning weight is an important economic trait in the meat rabbit industry. Evidence has linked the gut microbiota to health and production performance in rabbits. However, the effect of gut microbiota on meat rabbit weaning weight remains unclear. In this study, we performed 16S rRNA gene sequencing analysis of 135 faecal samples from commercial Ira rabbits. We detected 50 OTUs significantly associated with weaning weight. OTUs that showed positive associations with weaning weight were mostly members of the family Ruminococcaceae which are important in degrading dietary fibres and producing butyrate. On the contrary, OTUs annotated to genera Blautia, Lachnoclostridium and Butyricicoccus correlated with fat deposition were negatively associated with weaning weight. Predicted functional capacity analysis revealed that 91 KOs and 26 KEGG pathways exhibited potential correlations with weaning weight. We found that gut microbiota involved in the metabolism of amino acids, butanoate, energy and monosaccharides affected weaning weight. Additionally, cross-validation analysis indicated that 16.16% of the variation in weaning weight was explained by the gut microbiome. Our findings provide important information to improve weaning weight of meat rabbits by modulating their gut microbiome.


Subject(s)
Bacteria/classification , Bacteria/genetics , Body Weight , Feces/microbiology , Gastrointestinal Microbiome , Weaning , Animals , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rabbits , Sequence Analysis, DNA
13.
Theriogenology ; 129: 77-81, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30826720

ABSTRACT

Ribosomal protein S3 (RpS3), a member of the ribosome 40S subunit, has conventional ribosomal function and additional extraribosomal functions. The aim of the present study was to analyze the expression and localization of RpS3 and its function in early embryogenesis in mice. RpS3 mRNA and protein were expressed in multiple mouse tissues. In the ovary, RpS3 protein was ubiquitously and highly expressed in oocytes and granulosa cells. After ovulation and fertilization, RpS3 mRNA and protein were detected in oocytes and preimplantation embryos. Furthermore, RpS3 protein was localized in the cytoplasm of oocytes and preimplantation embryos. Moreover, knockdown of RpS3 in zygotes led to a significantly decreased rate of blastocyst formation. These results provide the first evidence for a novel function of RpS3 in regulating early embryonic development in mice.


Subject(s)
Embryonic Development/genetics , Ribosomal Proteins/physiology , Animals , Blastocyst/metabolism , Female , Gene Knockdown Techniques/veterinary , Male , Mice , Mice, Inbred ICR , Oocytes/metabolism , RNA, Messenger/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
14.
Biol Reprod ; 100(4): 963-970, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30476006

ABSTRACT

Valosin-containing protein (VCP) is a member of the highly conserved AAA (ATPase associated with a variety of cellular activities) superfamily. A previous study has shown that targeted deletion of Vcp in mice results in early embryonic lethality. The aim of the present study was to analyze the expression and localization of VCP and its function in meiotic arrest of mouse oocytes. Vcp mRNA and protein were expressed in multiple mouse tissues. In the ovary, VCP protein was mainly expressed in oocytes and granulosa cells. After ovulation and fertilization, Vcp mRNA and protein were detected in oocytes and preimplantation embryos. Furthermore, VCP protein was localized in both the cytoplasm and nucleus of germinal vesicle (GV)-stage oocytes and preimplantation embryos. Moreover, knockdown of Vcp in GV-stage oocytes led to a significantly increased rate of germinal vesicle breakdown (GVBD). In addition, inhibition of VCP protein improved the GVBD rate in mouse GV-stage oocytes. When VCP inhibition was reversed, the final GVBD rate returned to normal. These results provide the first evidence for a novel function of VCP in meiotic arrest of mouse oocytes.


Subject(s)
Meiosis/genetics , Oocytes/physiology , Resting Phase, Cell Cycle/genetics , Valosin Containing Protein/physiology , Animals , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cells, Cultured , Embryo, Mammalian , Female , Male , Meiosis/drug effects , Meiosis/physiology , Mice , Mice, Inbred ICR , Oocytes/cytology , Oocytes/drug effects , Quinazolines/pharmacology , Resting Phase, Cell Cycle/drug effects , Valosin Containing Protein/antagonists & inhibitors
15.
Asian-Australas J Anim Sci ; 32(2): 170-175, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30056670

ABSTRACT

OBJECTIVE: Uncoupling protein 3 gene (UCP3) is a candidate gene associated with the meat quality of pigs. The aim of this study was to explore the regulation mechanism of UCP3 expression and provide a theoretical basis for the research of the function of porcine UCP3 gene in meat quality. METHODS: Bisulfite sequencing polymerase chain reaction (PCR) and quantitative real-time PCR (Q-PCR) were used to analyze the methylation of UCP3 5'-flanking region and UCP3 mRNA expression in the adipose tissue or skeletal muscle of three pig breeds at different ages (1, 90, 210-day-old Putian Black pig; 90-day-old Duroc; and 90-day-old Dupu). RESULTS: Results showed that two cytosine-guanine dinucleotide (CpG) islands are present in the promoter region of porcine UCP3 gene. The second CpG island located in the core promoter region contained 9 CpG sites. The methylation level of CpG island 2 was lower in the adipose tissue and skeletal muscle of 90-day-old Putian Black pigs compared with 1-day-old and 210-day-old Putian Black pigs, and the difference also existed in the skeletal muscle among the three 90-day-old pig breeds. Furthermore, the obvious changing difference of UCP3 mRNA expression was observed in the skeletal muscle of different groups. However, the difference of methylation status and expression level of UCP3 gene was not significant in the adipose tissue. CONCLUSION: Our data indicate that UCP3 mRNA expression level was associated with the methylation status of UCP3 promoter in the skeletal muscle of pigs.

16.
J Reprod Dev ; 64(2): 173-177, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29434078

ABSTRACT

Fas-associated protein factor 1 (FAF1) is a Fas-associated protein that functions in multiple cellular processes. Previous research showed that mutations in Faf1 led to the lethality of cleavage stage embryos in a mouse model. The aim of the present study was to analyze the expression pattern, localization, and function of FAF1 in meiotic resumption of mouse oocytes. FAF1 was exclusively expressed in oocytes at various follicular stages within the ovary and was predominantly localized in the cytoplasm of growing oocytes. Furthermore, Faf1 mRNA and protein were persistently present during oocyte maturation and Faf1 mRNA levels were similar in the germinal vesicle (GV), GV breakdown (GVBD), and metaphase II (MII) stages of oocytes. Moreover, knockdown of Faf1 in GV-stage oocytes led to a significantly decreased rate of GVBD. To our knowledge, these results provide the first evidence regarding a novel function of FAF1 in meiotic resumption in mouse oocytes.


Subject(s)
Carrier Proteins/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation, Developmental , Mitosis , Oocytes/metabolism , Oogenesis , RNA, Messenger/metabolism , Active Transport, Cell Nucleus , Adaptor Proteins, Signal Transducing , Animals , Apoptosis Regulatory Proteins , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Cell Nucleus Shape , Cytoplasm/metabolism , Female , Immunohistochemistry , In Vitro Oocyte Maturation Techniques , Intracellular Signaling Peptides and Proteins , Metaphase , Mice, Inbred ICR , Microinjections , Microscopy, Fluorescence , Oocytes/cytology , RNA Interference
17.
Reproduction ; 154(3): 245-251, 2017 09.
Article in English | MEDLINE | ID: mdl-28630100

ABSTRACT

Nlrp2 is a maternal effect gene specifically expressed by mouse ovaries; deletion of this gene from zygotes is known to result in early embryonic arrest. In the present study, we identified FAF1 protein as a specific binding partner of the NLRP2 protein in both mouse oocytes and preimplantation embryos. In addition to early embryos, both Faf1 mRNA and protein were detected in multiple tissues. NLRP2 and FAF1 proteins were co-localized to both the cytoplasm and nucleus during the development of oocytes and preimplantation embryos. Co-immunoprecipitation assays were used to confirm the specific interaction between NLRP2 and FAF1 proteins. Knockdown of the Nlrp2 or Faf1 gene in zygotes interfered with the formation of a NLRP2-FAF1 complex and led to developmental arrest during early embryogenesis. We therefore conclude that NLRP2 interacts with FAF1 under normal physiological conditions and that this interaction is probably essential for the successful development of cleavage-stage mouse embryos. Our data therefore indicated a potential role for NLRP2 in regulating early embryo development in the mouse.


Subject(s)
Blastocyst/physiology , Carrier Proteins/antagonists & inhibitors , Embryonic Development/physiology , Gene Expression Regulation, Developmental , Oocytes/cytology , Proteins/antagonists & inhibitors , Adaptor Proteins, Signal Transducing , Animals , Apoptosis Regulatory Proteins , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cells, Cultured , Female , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred ICR , Oocytes/metabolism , Proteins/genetics , Proteins/metabolism
18.
Reprod Fertil Dev ; 26(5): 758-68, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23751860

ABSTRACT

The Nlrp gene family contains 20 members and plays a pivotal role in the innate immune and reproductive systems in the mouse. The aim of the present study was to analyse the Nlrp4g gene expression pattern, protein distribution and function in mouse oocyte maturation. Quantitative real-time polymerase chain reaction and in situ hybridisation were performed on Nlrp4g mRNA. Western blotting, immunohistochemistry and immunofluorescence were used to assess expression at the protein level. Confocal and immunogold electron microscopy analyses and RNA interference approach were used to determine the location of the NLRP4G protein and inhibit Nlrp4g function specifically in mouse germinal vesicle oocytes, respectively. Nlrp4g transcripts and proteins (~85kDa) are specifically expressed in mouse ovaries, restricted to the oocytes at various follicular stages and decline with oocyte aging. There is a marked decline in transcript levels in preimplantation embryos before zygotic genome activation, but the protein remains present through to the blastocyst stage. Confocal microscopy demonstrated that this protein is localised in the cytoplasm. Immunogold electron microscopy further confirmed that NLRP4G protein was present in the cytosol rather than in oocyte cytoplasmic organelles. Furthermore, knockdown of Nlrp4g in germinal vesicle oocytes did not affect oocyte maturation. These results provide the first evidence that Nlrp4g is an oocyte-specific gene but dispensable for oocyte maturation, suggesting that this gene may play roles in mouse oogenesis and/or preimplantation development.


Subject(s)
Gene Expression Regulation, Developmental , Oocytes/metabolism , Oogenesis/genetics , Repressor Proteins/genetics , Animals , Embryonic Development/genetics , Mice , Repressor Proteins/metabolism
19.
Ying Yong Sheng Tai Xue Bao ; 20(1): 190-6, 2009 Jan.
Article in Chinese | MEDLINE | ID: mdl-19449585

ABSTRACT

Thirty two microsatellite markers were utilized to analyze the genetic diversity and germplasm characteristics of five Fujian native duck breeds (Jinding duck, Liancheng white duck, Putian black duck, Shanma duck, and Muscovy duck) and two reference duck breeds (Beijing duck and Khaki Campbell duck). By using the markers, 371 alleles in test duck breeds were detected. The average allelic number per locus was 11.719, average value of PIC was 0.522, average number of effective alleles was from 5.141 to 6.961, and average heterozygosity was from 0.512 to 0.700. Based on Nei's standard distance (D(S)) and DA genetic distance, a dendrogram was constructed by using the unweighted pair group method with arithmetic mean (UPGMA). Jinding duck, Putian black duck, Liancheng white duck, Shanma duck, and Khaki Campbell duck were clustered into a group, and Beijing duck and Muscovy duck were clustered into another two groups, respectively. The dendrogram of D(A) and D(S) genetic distances were accorded with the real relations among the seven duck breeds.


Subject(s)
Ducks/genetics , Genetic Variation , Microsatellite Repeats/genetics , Alleles , Animals , China , Heterozygote
20.
Ying Yong Sheng Tai Xue Bao ; 15(5): 879-82, 2004 May.
Article in Chinese | MEDLINE | ID: mdl-15320415

ABSTRACT

A total of 40 short primers of arbitrary nucleotide sequence were used singly in polymerase chain reaction to amplify DNA fingerprints in pools of DNA representing seven duck populations from two ecological areas in Fujian Province. 9 primers which discriminated between the breed-specific DNA pools were used further to amplify individual pool components. Shannon index was used to calculate the genetic diversity and its partition within and between the seven duck populations. The relationships between seven duck populations and ecological environment, and their variation patterns were studied by RAPD. The results showed that the genetic diversity in east Fujian (67.97%) was higher than that in west Fujian (59.05%). Genetic differentiation was estimated to be about 32.03% among populations of east Fujian, and about 40.95% among populations of west Fujian. The genetic distance index matrix and UPMGA dendrogram indicated that Liancheng white duck, Taining duck, Longyan duck and Sanming duck in west Fujian had closer genetic relationships, and Longhai Jinding duck and Putian black duck in east Fujian had the similarly. There were some evidences showing that relevance existed between the variation and the geographical position.


Subject(s)
Ducks/classification , Ducks/genetics , Genetic Variation , Animals , China , Random Amplified Polymorphic DNA Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...