Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37015410

ABSTRACT

Converting a human portrait to anime style is a desirable but challenging problem. Existing methods fail to resolve this problem due to the large inherent gap between two domains that cannot be overcome by a simple direct mapping. For this reason, these methods struggle to preserve the appearance features in the original photo. In this paper, we discover an intermediate domain, the coser portrait (portraits of humans costuming as anime characters), that helps bridge this gap. It alleviates the learning ambiguity and loosens the mapping difficulty in a progressive manner. Specifically, we start from learning the mapping between coser and anime portraits, and present a proxy-guided domain adaptation learning scheme with three progressive adaptation stages to shift the initial model to the human portrait domain. In this way, our model can generate visually pleasant anime portraits with well-preserved appearances given the human portrait. Our model adopts a disentangled design by breaking down the translation problem into two specific subtasks of face deformation and portrait stylization. This further elevates the generation quality. Extensive experimental results show that our model can achieve visually compelling translation with better appearance preservation and perform favorably against the existing methods both qualitatively and quantitatively. Our code and datasets are available at https://github.com/NeverGiveU/PDA-Translation.

2.
IEEE Trans Vis Comput Graph ; 27(1): 178-189, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31352345

ABSTRACT

Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail to retain the semantically meaningful details when simplifying a very sketchy and complicated drawing. In this paper, we show that, with a well-designed multi-layer perceptual loss, we are able to obtain aesthetic and neat simplification results preserving semantically important global structures as well as fine details without blurriness and excessive emphasis on local structures. To do so, we design a multi-layer discriminator by fusing all VGG feature layers to differentiate sketches and clean lines. The weights used in layer fusing are automatically learned via an intelligent adjustment mechanism. Furthermore, to evaluate our method, we compare our method to state-of-the-art methods through multiple experiments, including visual comparison and intensive user study.

SELECTION OF CITATIONS
SEARCH DETAIL
...