Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Huan Jing Ke Xue ; 44(2): 1029-1039, 2023 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-36775626

ABSTRACT

Phthalic acid esters (PAEs) are ubiquitous environmental pollutants and are recognized as a threat to the environment and agricultural product safety across the world. In order to investigate the level of PAEs in garlic, soils, and agricultural films from Pizhou City, Jiangsu province, China, 11 garlic samples, 106 soil samples, and 4 agricultural film samples were collected and analyzed using GC-MS. In addition, the uptake and transport characteristics of six PAEs compounds classified as priority pollutants by the United States Environmental Protection Agency (EPA) in the garlic cultivar Daqingke were investigated under hydroponic conditions. The results indicated that dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) were the dominant PAEs species in garlic cloves of the different garlic varieties from Pizhou City. The average contents of DBP and DEHP in garlic cloves were 0.611 mg·kg-1 and 0.167 mg·kg-1, respectively, which were significantly higher than those of the commercial varieties of garlic. The concentrations of DBP and DEHP differed in three tissues of garlic bulbs, ordered as the skin of garlic bulb>skin of garlic clove>garlic clove. Dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), DBP, and DEHP were the main PAEs species and were detected in all the surface soils collected from Pizhou City. Compared with the soil allowable concentrations of the six PAEs in the United States, the DMP and DBP concentrations in approximately 100% and 63.2% of soil samples exceeded the recommended allowable concentrations set by the EPA. However, the levels of DEP, DIBP, and DEHP in the soils were below the maximum allowable concentrations set by the EPA. Nevertheless, the average content of DEHP in soils was 486 µg·kg-1 and was found to be much higher than that in the other four PAEs. Six PAEs, including DMP, DEP, DIBP, DBP, butyl benzyl phthalate (BBP), and DEHP, were detected in all the agricultural film samples. Among them, the contents of DBP and DEHP in the agricultural films were the highest, accounting for 53.7%-63.2% of the total PAEs. The amount of PAEs present in the residual film was significantly lower than that in the new film, and all six PAEs were detected in garlic or soil samples, suggesting that agricultural film can be an important source of PAEs in garlic farming soils and garlic. Furthermore, the garlic plants absorbed DMP and DEP efficiently from the substrate and showed higher translocation factors (TFs) for DMP and DEP than those for DBP, BBP, DEHP, and di-n-octyl phthalate (DnOP), resulting in a higher accumulation of DMP and DEP in the over-ground parts of garlic. In contrast, DBP and BBP in roots of garlic displayed higher bioconcentration factors (57.4 and 81.5, respectively) compared to those of the other four PAEs, whereas the TFs of DBP and BBP were lower; this may have contributed to the high accumulation of DBP in garlic bulbs. The BCFs and TFs of DEHP and DnOP in garlic were relatively lower, but the DEHP had been detected in all garlic cloves, which may be a result of the higher DEHP contents in soils.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Garlic , Phthalic Acids , Soil Pollutants , Diethylhexyl Phthalate/analysis , Soil Pollutants/analysis , Esters/analysis , Phthalic Acids/analysis , Dibutyl Phthalate , Soil/chemistry , Environmental Pollutants/analysis , China
2.
Chinese Journal of Biotechnology ; (12): 408-413, 2004.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-249972

ABSTRACT

Escherichia coli was genetically engineered to produce recombinant tumor necrosis factor-related apoptosis inducing ligand (Apo2L/TRAIL) using a temperature-inducible expression system. To create a fed-batch culture condition that allows efficient production of TRAIL, different feeding strategy including discontinuous, DO-stat and pH-stat feeding strategies were compared. Then, a special 2-stage feeding strategy was developed. High concentration of biomass (300g wet cell weight per liter of culture broth) and active soluble TRAIL protein (1.1g/L) was obtained by applying a high-cell-density cultivation procedure with the 2-stage feeding strategy. Cultivation of recombinant E. coli was started as a batch process at 30 degrees C and then followed by fed-batch culture when the dissolved oxygen concentration presented a steep increase resulted from the exhaustion of glucose in the medium. At the first phase of fermentation (batch phase), agitation rate was enhanced to control dissolved oxygen at 30 percent. When glucose in the medium was used up, indicated by a sudden rise in pH value and dissolved oxygen, the second phase (fed-batch phase) was started with glucose and nitrogen resource being supplied automatically. At the beginning of fed-batch operation, stirrer rate was cascaded with dissolved oxygen signals to keep it at 20 percent (DO-stat). During the fed-batch phase, glucose was limited to control the specific growth rate under the critical value microcrit, to avoid acetic acid excretion. When the stirrer speed arrived at its up-limit, the flow rate of feed was kept constant. In the inducing phase(42 degrees C for 4h) glucose was fed as a pH regulating agent (pH-stat) and the specific growth rate and dissolved oxygen decreased sharply. Aqueous ammonia was used for maintaining pH value at 7.0 throughout the first two phases. In the whole fermentation, acetic acid concentration didn't exceed 2.9 g/L. At the end of the high-cell-density cultivation process, no acetic acid could be detected in the medium. These results indicated that our fed-batch strategy was able to prevent acetate accumulation significantly. Although high cell density has been achieved, the induction process was not optimized satisfactorily and much work should be done further. Furthermore, since no special ways, like pure oxygen, pressure, has been used in our experiments, this efficient approaches would be useful not only in a pilot scale but also in an industry scale. Finally, simple purification procedure based on immobilized metal affinity column (IMAC) and CM-Sepharose column was implemented to isolate the TRAIL. Yields of more than 800mg TRAIL per liter of culture broth were obtained, the final purity reaching more than 95%. The purified TRAIL showed strong cytotoxity activity against human pancreatic 1990 tumor cells, with ED50 about 1.6 microg/mL.


Subject(s)
Humans , Escherichia coli , Genetics , Metabolism , Fermentation , Genetic Engineering , Methods , Recombinant Proteins , Chemistry , TNF-Related Apoptosis-Inducing Ligand , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...