Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 837
Filter
1.
Exp Mol Med ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825638

ABSTRACT

Methyltransferase-like 3 (METTL3) is a crucial element of N6-methyladenosine (m6A) modifications and has been extensively studied for its involvement in diverse biological and pathological processes. In this study, we explored how METTL3 affects the differentiation of stem cells from the apical papilla (SCAPs) into odonto/osteoblastic lineages through gain- and loss-of-function experiments. The m6A modification levels were assessed using m6A dot blot and activity quantification experiments. In addition, we employed Me-RIP microarray experiments to identify specific targets modified by METTL3. Furthermore, we elucidated the molecular mechanism underlying METTL3 function through dual-luciferase reporter gene experiments and rescue experiments. Our findings indicated that METTL3+/- mice exhibited significant root dysplasia and increased bone loss. The m6A level and odonto/osteoblastic differentiation capacity were affected by the overexpression or inhibition of METTL3. This effect was attributed to the acceleration of pre-miR-665 degradation by METTL3-mediated m6A methylation in cooperation with the "reader" protein YTHDF2. Additionally, the targeting of distal-less homeobox 3 (DLX3) by miR-665 and the potential direct regulation of DLX3 expression by METTL3, mediated by the "reader" protein YTHDF1, were demonstrated. Overall, the METTL3/pre-miR-665/DLX3 pathway might provide a new target for SCAP-based tooth root/maxillofacial bone tissue regeneration.

2.
PhytoKeys ; 242: 161-227, 2024.
Article in English | MEDLINE | ID: mdl-38854497

ABSTRACT

This study addresses the longstanding absence of a comprehensive phylogenetic backbone for the apple tribe Maleae, a deficiency attributed to limited taxon and marker sampling. We conducted an extensive taxon sampling, incorporating 563 plastomes from a diverse range of 370 species encompassing 26 presently recognized genera. Employing a range of phylogenetic inference methods, including RAxML and IQ-TREE2 for Maximum Likelihood (ML) analyses, we established a robust phylogenetic framework for the Maleae tribe. Our phylogenomic investigations provided compelling support for three major clades within Maleae. By integrating nuclear phylogenetic data with morphological and chromosomal evidence, we propose an updated infra-tribal taxonomic system, comprising subtribe Malinae Reveal, subtribe Lindleyinae Reveal, and subtribe Vauqueliniinae B.B.Liu (subtr. nov.). Plastid phylogenetic analysis also confirmed the monophyly of most genera, except for Amelanchier, Malus, Sorbus sensu lato, and Stranvaesia. In addition, we present a comprehensive taxonomic synopsis of Photinia and its morphological allies in the Old World, recognizing 27 species and ten varieties within Photinia, three species and two varieties within Stranvaesia, and two species and three varieties within Weniomeles. Furthermore, we also lectotypified 12 names and made two new combinations, Photiniamicrophylla (J.E.Vidal) B.B.Liu and Weniomelesatropurpurea (P.L.Chiu ex Z.H.Chen & X.F.Jin) B.B.Liu.

3.
J Dairy Sci ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762109

ABSTRACT

Buffaloes are vital contributors to the global dairy industry. Understanding the genetic basis of milk production traits in buffalo populations is essential for breeding programs and improving productivity. In this study, we conducted whole-genome resequencing on 387 buffalo genomes from 29 diverse Asian breeds, including 132 river buffaloes, 129 swamp buffaloes, and 126 crossbred buffaloes. We identified 36,548 copy number variant (CNVs) spanning 133.29 Mb of the buffalo genome, resulting in 2,100 copy number variant regions (CNVRs), with 1,993 shared CNVRs being found within the studied buffalo types. Analyzing CNVRs highlighted distinct genetic differentiation between river and swamp buffalo subspecies, verified by evolutionary tree and principal component analyses. Admixture analysis grouped buffaloes into river and swamp categories, with crossbred buffaloes displaying mixed ancestry. To identify candidate genes associated with milk production traits, we employed 3 approaches. First, we used Vst-based population differentiation, revealing 11 genes within CNVRs that exhibited significant divergence between different buffalo breeds, including genes linked to milk production traits. Second, expression quantitative loci (eQTL) analysis revealed differential expression of CNVR-driven genes (DECGs) associated with milk production traits. Notably, known milk production-related genes were among these DECGs, validating their relevance. Last, a genome-wide association study (GWAS) identified 3 CNVRs significantly linked to peak milk yield. Our study provides comprehensive genomic insights into buffalo populations and identifies candidate genes associated with milk production traits. These findings facilitate genetic breeding programs aimed at increasing milk yield and improving quality in this economically important livestock species.

4.
Sci Rep ; 14(1): 11462, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769348

ABSTRACT

Einstein-Podolsky-Rosen (EPR) steering is commonly shared among multiple observers by utilizing unsharp measurements. Nevertheless, their usage is restricted to local measurements and does not encompass all nonlocal measurement-based cases. In this work, a method for finding beneficial local measurement settings has been expanded to include nonlocal measurement cases. This method is applicable for any bipartite state and offers benefits even in scenarios with a high number of measurement settings. Using the Greenberger-Horne-Zeilinger state as an illustration, we show that employing unsharp nonlocal measurements can activate the phenomenon of steering sharing in contrast to using local measurements. Furthermore, our findings demonstrate that nonlocal measurements with unequal strength possess a greater activation capability compared to those with equal strength. Our activation method generates fresh concepts for conservation and recycling quantum resources.

5.
Nature ; 629(8014): 1091-1099, 2024 May.
Article in English | MEDLINE | ID: mdl-38750363

ABSTRACT

The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.


Subject(s)
Adansonia , Phylogeny , Adansonia/classification , Adansonia/genetics , Biodiversity , Conservation of Natural Resources , Ecology , Endangered Species , Evolution, Molecular , Genome, Plant/genetics , Madagascar , Population Dynamics , Sea Level Rise
6.
Adv Mater ; : e2404815, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719211

ABSTRACT

The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.

7.
Front Aging Neurosci ; 16: 1383278, 2024.
Article in English | MEDLINE | ID: mdl-38572153

ABSTRACT

Objective: Alzheimer's disease (AD) is a prevalent neurodegenerative condition that significantly impacts both individuals and society. This study aims to evaluate the effectiveness of repetitive transcranial magnetic stimulation (rTMS) as a treatment for AD by summarizing the evidence from systematic reviews (SRs) and meta-analyses (MAs). Methods: SRs/MAs of rTMS for AD were collected by searching Embase, Web of Science, Cochrane Library, PubMed, CNKI, VIP, Sino-Med, and Wanfang databases. The search was conducted from database creation to January 23, 2024. Methodological quality, reporting quality and risk of bias were assessed using the Assessing Methodological Quality of Systematic Reviews 2 (AMSTAR-2), Risk of Bias in Systematic Reviews (ROBIS) tool and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). In addition, the quality of evidence for outcome measures was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE). Results: Eight SRs/MAs included in this study met the inclusion criteria. Based on the AMSTAR-2, 4 of the SRs/MA were classified as low quality, while the remaining 4 were deemed to be of very low quality. The PRISMA analysis revealed that out of the 27 items reporting, 16 achieved full reporting (100%). However, there were still some deficiencies in reporting, particularly related to protocol and registration, search strategy, risk of bias, and additional analysis. The ROBIS tool indicated that only 3 SRs/MAs had a low risk of bias. The GRADE assessment indicated that 6 outcomes were of moderate quality (18.75%), 16 were of low quality (50%), and 10 were classified as very low quality (31.25%). Conclusion: Based on the evidence collected, rTMS appears to be effective in improving cognitive function in AD patients, although the methodological quality of the SRs/MAs reduces the reliability of the conclusions and the overall quality is low. However, based on the available results, we still support the value of rTMS as an intervention to improve cognitive function in AD. In future studies, it is necessary to confirm the efficacy of rTMS in AD patients and provide more reliable and scientific data to contribute to evidence-based medicine.

8.
Waste Manag ; 181: 44-56, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38583272

ABSTRACT

Phosphate tailings (PT) was used to reduce the release of heavy metals (HMs) during pyrolysis and the leachable rate of residual HMs, and simultaneously improve the bioavailability of phosphorus in the sludge-based biochar. The concentration of heavy metals and the fractions determined by BCR method was used to investigate the release and the transformation of Zn, Pb, Mn, Ni and Cu during pyrolysis involved with the effects of temperature and the addition of PT. The respective pyrolysis experiments shows that the release of Zn and Pb increases with temperature for both sewage sludge (SS) and PT, and the bioavailable fractions (F1 + F2) of Mn, Ni, and Cu increases with temperature for PT. During co-pyrolysis, blended samples released lower quantities of Zn and Pb and presented lower bioavailability of HMs than the individual SS or PT. A synergistic effect of co-pyrolysis was evident for volatile Zn and Pb. The decomposition of CaMg (CO3)2 from PT produced CaO, by which the volatile ZnCl2 and PbCl2 were transformed into ZnO and PbO with less volatility and higher reactivity with SiO2 and Al2O3 than the chlorides. Then SiO2 and Al2O3 from SS acted as the final stabilizer to immobilize the oxides. The final product combined with SiO2 and Al2O3, such as ZnSiO4 and ZnAl2O4, were detected. The addition of PT also introduced more Ca and P into sludge to produce biochar with higher concentration of apatite phosphorus with higher bioavailability.


Subject(s)
Metals, Heavy , Phosphates , Phosphorus , Pyrolysis , Sewage , Sewage/chemistry , Metals, Heavy/chemistry , Metals, Heavy/analysis , Phosphorus/chemistry , Phosphates/chemistry , Charcoal/chemistry
9.
Bioorg Chem ; 147: 107380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636432

ABSTRACT

The COVID-19 pandemic continues to pose a threat to global health, and sounds the alarm for research & development of effective anti-coronavirus drugs, which are crucial for the patients and urgently needed for the current epidemic and future crisis. The main protease (Mpro) stands as an essential enzyme in the maturation process of SARS-CoV-2, playing an irreplaceable role in regulating viral RNA replication and transcription. It has emerged as an ideal target for developing antiviral agents against SARS-CoV-2 due to its high conservation and the absence of homologous proteases in the human body. Among the SARS-CoV-2 Mpro inhibitors, non-peptidic compounds hold promising prospects owing to their excellent antiviral activity and improved metabolic stability. In this review, we offer an overview of research progress concerning non-peptidic SARS-CoV-2 Mpro inhibitors since 2020. The efforts delved into molecular structures, structure-activity relationships (SARs), biological activity, and binding modes of these inhibitors with Mpro. This review aims to provide valuable clues and insights for the development of anti-SARS-CoV-2 agents as well as broad-spectrum coronavirus Mpro inhibitors.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Protease Inhibitors , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Structure-Activity Relationship , COVID-19 Drug Treatment , Molecular Structure , COVID-19/virology
10.
Phytomedicine ; 128: 155412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579666

ABSTRACT

BACKGROUND: Psoriasis is a long-lasting, inflammatory, continuous illness caused through T cells and characterized mainly by abnormal growth and division of keratinocytes. Currently, corticosteroids are the preferred option. However, prolonged use of traditional topical medication can lead to adverse reactions and relapse, presenting a significant therapeutic obstacle. Improved alternative treatment options are urgently required. Formononetin (FMN) is a representative component of isoflavones in Huangqi (HQ) [Astragalus membranaceus (Fisch.) Bge.]. It possesses properties that reduce inflammation, combat oxidation, inhibit tumor growth, and mimic estrogen. Although FMN has been shown to ameliorate skin barrier devastation via regulating keratinocyte apoptosis and proliferation, there are no reports of its effectiveness in treating psoriasis. OBJECTIVE: Through transcriptomics clues and experimental investigation, we aimed to elucidate the fundamental mechanisms underlying FMN's action on psoriasis. MATERIALS AND METHODS: Cell viability was examined using CCK8 assay in this study. The results of analysis of differentially expressed genes (DEGs) between FMN-treated HaCaT cells and normal HaCaT cells using RNA-sequencing (RNA-seq) were presented on volcano plots and heatmap. Enrichment analysis was conducted on DEGs using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), and results were validated through RT-qPCR verification. After 12 days of FMN treatment in psoriasis mouse model, we gauged the PASI score and epidermis thickness. A variety of techniques were used to assess FMN's effectiveness on inhibiting inflammation and proliferation related to psoriasis, including RT-qPCR, HE staining, western blot, and immunohistochemistry (IHC). RESULTS: The findings indicated that FMN could suppress the growth of HaCaT cells using CCK8 assay (with IC50 = 40.64 uM) and 20 uM FMN could reduce the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to the greatest extent. FMN-treated HaCaT cells exhibited 985 up-regulated and 855 down-regulated DEGs compared to normal HaCaT cells. GO analysis revealed that DEGs were linked to interferon (IFN) signaling pathway. Furthermore, FMN improved pathological features, which encompassed decreased erythema, scale, and thickness scores of skin lesions in psoriasis mouse model. In vivo experiments confirmed that FMN down-regulated expression of IFN-α, IFN-ß, IFN-γ, decreased secretion of TNF-α and IL-17 inflammatory factors, inhibited expression of IFN-related chemokines included Cxcl9, Cxcl10, Cxcl11 and Cxcr3 and reduced expression of transcription factors p-STAT1, p-STAT3 and IFN regulatory factor 1 (IRF1) in the imiquimod (IMQ) group. CONCLUSIONS: In summary, these results suggested that FMN played an anti-inflammatory and anti-proliferative role in alleviating psoriasis by inhibiting IFN signaling pathway, and FMN could be used as a potential therapeutic agent.


Subject(s)
HaCaT Cells , Isoflavones , Psoriasis , Signal Transduction , Isoflavones/pharmacology , Psoriasis/drug therapy , Animals , Signal Transduction/drug effects , Humans , Mice , Interferons , Cell Survival/drug effects , Keratinocytes/drug effects , Inflammation/drug therapy , Astragalus propinquus/chemistry , Mice, Inbred BALB C , Male , Disease Models, Animal
11.
Sci Adv ; 10(17): eadk3852, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657063

ABSTRACT

Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.


Subject(s)
Animal Migration , Genomics , Wind , Animals , Genomics/methods , Hemiptera/genetics , Genome, Insect , Genetics, Population
12.
Front Immunol ; 15: 1336311, 2024.
Article in English | MEDLINE | ID: mdl-38585260

ABSTRACT

Envafolimab is a Chinese domestic innovative fusion of a humanized single-domain programmed death-ligand 1 (PD-L1) antibody (dAb) and human immunoglobulin IgG1 crystalline fragment (Fc) developed for subcutaneous injections. It was granted conditional market authorization by the China National Medical Product Administration (NMPA) in December 2021. Envafolimab is used to treat adult patients with previously treated microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR) advanced solid tumors, including patients with advanced colorectal cancer disease progression who were previously administered fluorouracil, oxaliplatin, and irinotecan, as well as other patients with advanced solid tumors who experienced disease progression after receiving standard treatment and had no other alternative treatment options. However, the lack of post-marketing clinical trial data requires conducting more clinical studies on the safety and efficacy of envafolimab in order to provide scientific basis and a reference for future therapeutic applications. In this paper, we report a case of severe skin necrosis and bleeding in the area of injection after subcutaneous administration of envafolimab in a patient diagnosed with hepatocellular carcinoma. We discuss issues that must be considered before administration of a PD-L1 inhibitor subcutaneously, which could induce immune mechanisms leading to skin necrosis in the area of injection.


Subject(s)
Antibodies, Monoclonal, Humanized , Carcinoma, Hepatocellular , Liver Neoplasms , Adult , Humans , Immunoglobulin G , Disease Progression , Necrosis
13.
J Asian Nat Prod Res ; : 1-8, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600044

ABSTRACT

Two new triterpene fatty acid esters, 3ß-palmityloxy-12,27-cyclofriedoolean-14-en-11α-ol (1) and 3ß-palmityloxy-19α-hydroxyursane (2), together with 3ß-hydroxy-11-oxo-olean-12-enyl palmitate (3) were isolated from the potent anti-inflammatory active fraction of the petroleum ether-soluble part of Cirsium setosum ethanol extract. Compound 1 was found to be a rare 12,27-cyclopropane triterpenoid. Their structures were determined through spectral data analysis combined with literature reports. Furthermore, in vitro experiment, compounds 1-3 exhibited significant inhibitory effects on nitric oxide production in lipopolysaccharide-activated mouse RAW264.7 macrophages.

14.
Cell Rep Methods ; 4(3): 100738, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38508188

ABSTRACT

Spatially resolved epigenomic profiling is critical for understanding biology in the mammalian brain. Single-cell spatial epigenomic assays were developed recently for this purpose, but they remain costly and labor intensive for examining brain tissues across substantial dimensions and surveying a collection of brain samples. Here, we demonstrate an approach, epigenomic tomography, that maps spatial epigenomes of mouse brain at the scale of centimeters. We individually profiled neuronal and glial fractions of mouse neocortex slices with 0.5 mm thickness. Tri-methylation of histone 3 at lysine 27 (H3K27me3) or acetylation of histone 3 at lysine 27 (H3K27ac) features across these slices were grouped into clusters based on their spatial variation patterns to form epigenomic brain maps. As a proof of principle, our approach reveals striking dynamics in the frontal cortex due to kainic-acid-induced seizure, linked with transmembrane ion transporters, exocytosis of synaptic vesicles, and secretion of neurotransmitters. Epigenomic tomography provides a powerful and cost-effective tool for characterizing brain disorders based on the spatial epigenome.


Subject(s)
Chromatin , Neocortex , Mice , Animals , Histones/genetics , Epigenomics/methods , Lysine , Neocortex/metabolism , Mammals/metabolism
15.
Biosens Bioelectron ; 254: 116201, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38507928

ABSTRACT

Developing highly sensitive and selective methods that incorporate specific recognition elements is crucial for detecting small molecules because of the limited availability of small molecule antibodies and the challenges in obtaining sensitive signals. In this study, a generalizable photoelectrochemical-colorimetric dual-mode sensing platform was constructed based on the synergistic effects of a molecularly imprinted polymer (MIP)-aptamer sandwich structure and nanoenzymes. The MIP functionalized peroxidase-like Fe3O4 (Fe3O4@MIPs) and alkaline phosphatase mimic Zr-MOF labeled aptamer (Zr-mof@Apt) were used as the recognition elements. By selectively accumulating dibutyl phthalate (DBP), a small molecule target model, on Fe3O4@MIPs, the formation of Zr-MOF@Apt-DBP- Fe3O4@MIPs sandwich structure was triggered. Fe3O4@MIPs oxidized TMB to form blue-colored oxTMB. However, upon selective accumulation of DBP, the catalytic activity of Fe3O4@MIPs was inhibited, resulting in a lighter color that was detectable by the colorimetric method. Additionally, Zr-mof@Apt effectively catalyzed the hydrolysis of L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS), generating ascorbic acid (AA) that could neutralize the photogenerated holes to decrease the photocurrent signals for PEC sensing and reduce oxTMB for colorimetric testing. The dual-mode platform showed strong linearity for different concentrations of DBP from 1.0 pM to 10 µM (PEC) and 0.1 nM to 0.5 µM (colorimetry). The detection limits were 0.263 nM (PEC) and 30.1 nM (colorimetry) (S/N = 3), respectively. The integration of dual-signal measurement mode and sandwich recognition strategy provided a sensitive and accurate platform for the detection of small molecules.


Subject(s)
Biosensing Techniques , Molecularly Imprinted Polymers , Colorimetry/methods , Peroxidase/chemistry , Peroxidases
16.
Burns Trauma ; 12: tkad054, 2024.
Article in English | MEDLINE | ID: mdl-38444636

ABSTRACT

Background: The breakdown of intestinal barrier integrity occurs after severe burn injury and is responsible for the subsequent reactions of inflammation and oxidative stress. A new protective strategy for the intestinal barrier is urgently needed due to the limitations of the traditional methods. Recently, the application of nanoparticles has become one of the promising therapies for many inflammation-related diseases or oxidative damage. Herein, we developed a new anti-inflammatory and antioxidant nanoparticle named luminol-conjugated cyclodextrin (LCD) and aimed to evaluate its protective effects in severe burn-induced intestinal injury. Methods: First, LCD nanoparticles, engineered with covalent conjugation between luminol and ß-cyclodextrin (ß-CD), were synthesized and examined. Then a mouse burn model was successfully established before the mouse body weight, intestinal histopathological manifestation, permeability, tight junction (TJ) expression and pro-inflammatory cytokines were determined in different groups. The proliferation, apoptosis, migration and reactive oxygen species (ROS) of intestinal epithelial cells (IECs) were assessed. Intraepithelial lymphocytes (IELs) were isolated and cultured for analysis by flow cytometry. Results: LCD nanoparticle treatment significantly relieved the symptoms of burn-induced intestinal injury in the mouse model, including body weight loss and intestinal permeability abnormalities. Moreover, LCD nanoparticles remarkably recovered the mechanical barrier of the intestine after severe burn, renewed TJ structures, promoted IEC proliferation and migration, and inhibited IEC apoptosis. Mechanistically, LCD nanoparticles dramatically alleviated pro-inflammation factors (tumor necrosis factor-α, IL-17A) and ROS accumulation, which could be highly involved in intestinal barrier disruption. Furthermore, an increase in IL-17A and the proportion of IL-17A+Vγ4+ γδ T subtype cells was also observed in vitro in LPS-treated Vγ4+ γδ T cells, but the use of LCD nanoparticles suppressed this increase. Conclusions: Taken together, these findings demonstrate that LCD nanoparticles have the protective ability to ameliorate intestinal barrier disruption and provide a therapeutic intervention for burn-induced intestinal injury.

18.
J Bone Miner Res ; 39(4): 484-497, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38477789

ABSTRACT

Rebound bone loss following denosumab discontinuation is an important clinical challenge. Current treatment strategies to prevent this fail to suppress the rise and overshoot in osteoclast-mediated bone resorption. In this study, we use a murine model of denosumab treatment and discontinuation to show the temporal changes in osteoclast formation and activity during RANKL inhibition and withdrawal. We show that the cellular processes that drive the formation of osteoclasts and subsequent bone resorption following withdrawal of RANKL inhibition precede the rebound bone loss. Furthermore, a rise in serum TRAP and RANKL levels is detected before markers of bone turnover used in current clinical practice. These mechanistic advances may provide insight into a more defined window of opportunity to intervene with sequential therapy following denosumab discontinuation.


Stopping denosumab, a medication commonly used to improve bone mass by blocking formation of bone resorbing osteoclasts, leads to a rebound loss in the bone which was gained during treatment. Current strategies to prevent this bone loss fail in most cases as they are unable to prevent the rise and overshoot in bone resorption by osteoclasts. Thie stems from an incomplete understanding of how osteoclasts behave during denosumab treatment and after treatment is discontinued. We use a mouse model of this phenomenon to show how osteoclast formation and activity changes throughout this process. We show that increases in the processes that drive the formation of osteoclasts can be detected in the circulation before bone loss occurs. These findings could therefore provide insight into a targeted 'window of opportunity' to intervene and prevent the rebound bone loss following stopping denosumab in patients.


Subject(s)
Bone Resorption , Denosumab , Osteoclasts , RANK Ligand , Animals , Osteoclasts/metabolism , Osteoclasts/drug effects , RANK Ligand/antagonists & inhibitors , RANK Ligand/metabolism , Denosumab/pharmacology , Mice , Bone Resorption/pathology , Bone Resorption/drug therapy , Bone Resorption/blood , Time Factors , Tartrate-Resistant Acid Phosphatase/metabolism , Female , Mice, Inbred C57BL , Biomarkers/metabolism , Biomarkers/blood
19.
Environ Res ; 251(Pt 2): 118664, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38499222

ABSTRACT

The extensive use of mineral fertilizers has a negative impact on the environment, whereas wastewater and microalgal biomass can provide crops with nutrients such as nitrogen, phosphorus, and potassium, and have the potential to be used as a source of fertilizers in circular agriculture. In this study, a step-by-step resource utilization study of algae-containing wastewater generated from microalgae treatment of swine wastewater was carried out. When wheat seedlings were cultivated in the effluent after microalgae separation, the root fresh weight, seedling fresh weight, and total seedling length were increased by 3.44%, 14.45%, and 13.64%, respectively, compared with that of the algae-containing wastewater, and there was no significant difference in seedling fresh weight, total seedling length, maximum quantum yields of PSII photochemistry (Fv/Fm), and performance index (PIABS) from that of the Hogland solution group, which has the potential to be an alternative liquid fertilizer. Under salt stress, microalgae extract increased the contents of GA3, IAA, ABA, and SA in wheat seedlings, antioxidant enzymes maintained high activity, and the PIABS value increased. Low-dose microalgae extract (1 mL/L) increased the root fresh weight, seedling fresh weight, longest seedling length, and total seedling length by 30.73%, 31.28%, 16.43%, and 28.85%, respectively. Algae extract can act as a plant biostimulant to regulate phytohormone levels to attenuate the damage of salt stress and promote growth.


Subject(s)
Biomass , Microalgae , Seedlings , Triticum , Wastewater , Triticum/growth & development , Triticum/drug effects , Microalgae/growth & development , Microalgae/drug effects , Seedlings/growth & development , Seedlings/drug effects , Animals , Wastewater/chemistry , Swine , Salt Tolerance , Fertilizers/analysis , Waste Disposal, Fluid/methods
20.
Cell Commun Signal ; 22(1): 164, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448900

ABSTRACT

Pancreatic neuroendocrine tumors (PanNETs), though uncommon, have a high likelihood of spreading to other body parts. Previously, the genetic diversity and evolutionary patterns in metastatic PanNETs were not well understood. To investigate this, we performed multiregion sampling whole-exome sequencing (MRS-WES) on samples from 10 patients who had not received prior treatment for metastatic PanNETs. This included 29 primary tumor samples, 31 lymph node metastases, and 15 liver metastases. We used the MSK-MET dataset for survival analysis and validation of our findings. Our research indicates that mutations in the MEN1/DAXX genes might trigger the early stages of PanNET development. We categorized the patients based on the presence (MEN1/DAXXmut, n = 7) or absence (MEN1/DAXXwild, n = 3) of these mutations. Notable differences were observed between the two groups in terms of genetic alterations and clinically relevant mutations, confirmed using the MSK-MET dataset. Notably, patients with mutations in MEN1/DAXX/ATRX genes had a significantly longer median overall survival compared to those without these mutations (median not reached vs. 43.63 months, p = 0.047). Multiplex immunohistochemistry (mIHC) analysis showed a more prominent immunosuppressive environment in metastatic tumors, especially in patients with MEN1/DAXX mutations. These findings imply that MEN1/DAXX mutations lead PanNETs through a unique evolutionary path. The disease's progression pattern indicates that PanNETs can spread early, even before clinical detection, highlighting the importance of identifying biomarkers related to metastasis to guide personalized treatment strategies.


Subject(s)
Liver Neoplasms , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Exome Sequencing , Neuroendocrine Tumors/genetics , Genomics , Liver Neoplasms/genetics , Pancreatic Neoplasms/genetics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...