Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Colloid Interface Sci ; 673: 80-91, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38875800

ABSTRACT

N-regulated three-dimensional (3D) turf-like carbon material loaded with FeCoNi nanoalloys (F-CNS-CNT), composed of carbon nanotubes (CNT) grown in situ on carbon nanosheets(CNS), was synthesized using a low-temperature solution combustion method and organic compounds rich in pyridinic-N. This distinct structure significantly expands the effective electrochemical surface area, revealing an abundance of active sites and enhancing the mass transfer capability for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Both experimental observations and theoretical calculations corroborate that the synergy between the FeCoNi nanoalloy and the highly pyridinic N-doped carbon substrate optimizes the adsorption and desorption-free energy of oxygen intermediates, resulting in a remarkable improvement of intrinsic ORR/OER activity. Therefore, the derived F-CNS-CNT electrocatalyst can present a favorable half-wave potential of 0.85 V (ORR) and a lower overpotential of 260 mV (corresponding to a current density of 10 mA cm-2, OER) in alkaline media. Moreover, when employed in the air cathode of a flowable zinc-air battery, the electrocatalyst exhibits exceptional discharge and charge performance, including a high power density of 144.6 mW cm-2, a high specific capacity of 801 mAh g-1, and an impressive cycling stability of 600 cycles at a current density of 10 mA cm-2. Notably, these results markedly surpass those of the commercial catalyst Pt/C + IrO2.

2.
Mater Horiz ; 11(9): 2258-2270, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38439663

ABSTRACT

CH3NH3PbI3 has shown great potential for photodetectors and photovoltaic devices due to its excellent positive response to visible light. However, its real-time response characteristics hinder its application in optical memory and logic operation; moreover, the presence of excessive PbI2 is a double-edged sword. Herein, we constructed a dual-terminal device using a single CH3NH3PbI3 micro/nanowire with two Ag electrodes, and then in situ introduced PbI2 quantum dots (QDs) as hole trap centres by thermal decomposition at 160 °C. An anomalous negative photoconductivity (NPC) effect for sub-bandgap light below the PbI2 bandgap is obtained. Importantly, an electrically erasable nonvolatile photomemory can be realized. Furthermore, the device also exhibits an abnormal positive thermal resistance (PTR)-related thermomemory effect, and the thermal-induced high-resistance state (HRS) can be erased by a large bias or an illumination of 365 nm super-bandgap UV light. Additionally, logical "OR" gate operations are achieved through a combination of 650 nm sub-bandgap light and a 70 °C temperature-induced HRS, as well as a large bias and 365 nm super-bandgap light-triggered low-resistance state. These effects are attributed to the excitation and injection of holes in QDs and structural defect traps. This multifunctional device, integrating real-time sensing, nonvolatile memory, and logical operation, holds significant potential for novel electronic and optoelectronic applications.

3.
Inorg Chem ; 63(4): 2157-2173, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38206809

ABSTRACT

It is an important strategy to design composite materials with a special microstructure and a tunable electronic structure through structural compatibility. In this work, a novel hexagonal/cubic ZnIn2S4 polymorphic heterophase junction with a three-dimensional multihierarchical structure is successfully constructed by in situ growth of hexagonal ZnIn2S4 nanosheets on the surface of cubic ZnIn2S4 flower-like microspheres prepared by topological chemical synthesis. On the one hand, the multihierarchical architecture provides large specific surface area, abundant active sites, and excellent light trapping capability. On the other hand, the construction of a direct S-scheme heterophase junction enables the formation of a special charge-transfer channel under the force of a built-in electric field, which not only improves the separation efficiency of carriers but also ensures the stronger reaction activity of charges. The prepared ZnIn2S4 heterophase junction composite photocatalyst exhibits greatly boosted photocatalytic efficiency in rhodamine B degradation, hexavalent chromium reduction, and water splitting for hydrogen production, which are 12.3, 6.5, and 3.1 times higher than that of pure hexagonal ZnIn2S4 and 8.1, 5.1, and 2.3 times higher than that of pure cubic ZnIn2S4, respectively, demonstrating its significant potential for applications in energy and environmental fields.

4.
ACS Appl Mater Interfaces ; 15(47): 54863-54874, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37966314

ABSTRACT

CH3NH3PbI3 is capable of exhibiting a superior photoresponse to visible light, but its self-powered devices are typically formed through p-n junctions. In this study, we fabricated a Ag/CH3NH3PbI3/C dual-terminal asymmetric electrode device using a single CH3NH3PbI3 perovskite micro/nanowire, enabling both the photoresponse and self-powered characteristics of CH3NH3PbI3 to visible light. Compared with traditional p-n junction devices, this simple device demonstrates enhanced interface photovoltaic effects by optimizing the combination of the Ag electrode with CH3NH3PbI3, resulting in superior self-powered characteristics. Under low bias voltage, the device achieves a significant on/off ratio of 103, with superior sensitivity and responsivity as well as a maximum rectification ratio of about 12. The photogenerated voltage and current reach approximately 0.8 V and 2 nA, respectively. This simple, compact, and self-powered asymmetric device exhibits great potential for applications in self-powered optoelectronics and wearable devices. This research provides a promising approach for recognizing and utilizing surface state effects in single nanoscale structures.

5.
J Colloid Interface Sci ; 648: 181-192, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37301143

ABSTRACT

To develop ideal alternatives to noble metal catalysts, transition metal catalysts supported on graphene have been receiving extensive attention in the field of electrochemical energy. In this work, using graphene oxide (GO) and nickel formate as precursors, Ni/NiO synergistic nanoparticles with regulable composition are anchored on reduced graphene oxide (RGO) to prepare Ni/NiO/RGO composite electrocatalysts through in-situ autoredox. Thanks to the synergistic effect of Ni3+ active sites and Ni electron donors, the as-prepared Ni/NiO/RGO catalysts exhibit efficient electrocatalytic oxygen evolution performance in 1.0 M KOH electrolyte. The optimal sample has an overpotential of only 275 mV at a current density of 10 mA cm-2 and a small Tafel slope of 90 mV dec-1, which are very comparable to those of commercial RuO2 catalyst. Additionally, the catalytic capacity and structure remain stable after 2000 cyclic voltammetry cycles. For the electrolytic cell assembled with the best-performing sample as anode and commercial Pt/C as cathode, the current density can reach 10 mA cm-2 at a low potential of 1.57 V and remains stable after 30 h of continuous work. It would be expected that the as-developed Ni/NiO/RGO catalyst with high activity should have broad application prospects.

6.
Inorg Chem ; 62(8): 3646-3659, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36765458

ABSTRACT

Photocatalysis has long been considered a promising technology in green energy and environmental remediation. Since the poor performance of single components greatly limits the practical applications, the construction of heterostructures has become one of the most important technical means to improve the photocatalytic activity. In this work, based on the synthesis of oxygen-vacancy-rich ZnCr2O4 nanocrystals, ZnCr2O4/ZnIn2S4 composites are prepared via a low-temperature in situ growth, and the oxygen-vacancy-induced Z-scheme heterojunction is successfully constructed. The unique core-shell structure offers a tight interfacial contact, increases the specific surface area, and promotes the rapid charge transfer. Meanwhile, the oxygen-vacancy defect level not only enables wide-bandgap ZnCr2O4 to be excited by visible light enhancing the light absorption, but also provides necessary conditions for the construction of Z-scheme heterojunctions promoting charge separation and migration and allowing more reactive charges. The reaction rates of visible-light-driven photocatalytic hydrogen production (3.421 mmol g-1 h-1), hexavalent chromium reduction (0.124 min-1), and methyl orange degradation (0.067 min-1) of the composite reach 3.6, 6.5, and 8.4 times those of pure ZnIn2S4, and 15.8, 41.3, and 67.0 times those of pure ZnCr2O4, respectively. This work presents a novel option for constructing high-performance photocatalysts.

7.
Inorg Chem ; 62(1): 543-556, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36534974

ABSTRACT

The widespread application of dyes and heavy metals causes increasing environmental pollution. One effective way to mitigate environmental pollution is to use semiconductor photocatalysts for redox purification of pollutants. Heterostructured photocatalysts can reduce the electron-hole recombination rate and improve light utilization. In this work, a novel SnO2/In3-xS4 composite with oxygen vacancy defect-mediated Z-scheme heterostructure is constructed for the first time by a one-pot method, in which SnO2 ultrasmall nanocrystals are decorated on nanopetals of flower-like In3-xS4. Material analyses show that the as-built three-dimensional hierarchical architecture is able to essentially increase the specific surface area and thus the active sites of the products. More importantly, the formation of Z-scheme heterojunction between the oxygen vacancy-induced SnO2 defect level and the In3-xS4 band structure not only promotes the separation of photogenerated charges but also makes them more reactive. Through the optimization of the composition ratio between the two phases, the visible-light-driven photocatalytic reaction rates of rhodamine B degradation and Cr(VI) reduction for the developed SnO2/In3-xS4 composite photocatalyst are 12.8 and 6.3 times of bare In3-xS4 and 32.0 and 76.0 times of bare SnO2, respectively. This work should provide a promising implication for designing new high-performance composite photocatalysts.

8.
ACS Appl Mater Interfaces ; 14(45): 51001-51009, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36318543

ABSTRACT

The application of composite materials that combine the advantages of carbonaceous material and metal alloy proves to be a valid method for improving the performance of lithium-sulfur batteries (LSBs). Herein iron-cobalt-nickel (FeCoNi) ternary alloy nanoparticles (FNC) that spread on nitrogen-doped carbon (NC) are obtained by a strategy of low-temperature sol-gel followed by annealing at 800 °C under an argon/hydrogen atmosphere. Benefiting from the synergistic effect of different components of FNC and the conductive network provided by the NC, not only can the "shuttle effect" of lithium polysulfides (LiPS) be suppressed, but also the conversion of LiPS, the diffusion of Li+, and the deposition of Li2S can be accelerated. Taking advantage of those merits, the batteries assembled with an FNC@NC-modified polypropylene (PP) separator (FNC@NC//PP) can deliver a high reversible specific capacity of 1325 mAh g-1 at 0.2 C and maintain 950 mAh g-1 after 200 cycles, and they can also achieve a low capacity fading rate of 0.06% per cycle over 500 cycles at 1 C. More impressively, even under harsh test conditions (the ratio of electrolyte to sulfur (E/S) = 6 µL mg-1 and sulfur loading = 4.7 mg cm-2 and E/S = 10 µL mg-1 and sulfur loading = 5.9 mg cm-2), the area capacity of batteries is still much higher than 4 mAh cm-2.

9.
Nanoscale Horiz ; 7(9): 1095-1108, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35913084

ABSTRACT

Although CH3NH3PbI3 can present an excellent photoresponse to visible light, its application in solar cells and photodetectors is seriously hindered due to hysteresis behaviour. Moreover, for its origin, there exist different opinions. Herein, we demonstrate a route to realize precise control for the electrical transport of a single CH3NH3PbI3 micro/nanowire by constructing a two-terminal device with asymmetric Ag and C electrodes, and its hysteresis can be clearly identified as a synergistic effect of the redox reaction at the interface of the Ag electrode and the injection and ejection of holes in the interfacial traps of the C electrode rather than its bulk effect. The device can show superior bias amplitude and illumination intensity dependence of hysteresis loops with typical bipolar resistive switching features. Thus, an excellent multilevel nonvolatile optical memory can be effectively realized by the modulation of the illumination and bias, and moreover a logic OR gate operation can be successfully implemented with voltage and illumination as input signals as well. This work clearly reveals and provides a new insight of hysteresis origin that can be attributed to a synergistic effect of two asymmetrical electrode interfaces, and therefore precisely controlling its electrical transport to realize an outstanding application potential in multifunctional devices integrated with optical nonvolatile memory and logic OR gate operation.

10.
Dalton Trans ; 51(30): 11416-11426, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35822345

ABSTRACT

Multifunctional multinary metal chalcogenides have long been a research hotspot in the field of materials chemistry due to their rich composition, flexible structure, excellent properties and wide range of applications. However, the exploration of complex quinary chalcogenides is still challenging. In this work, for the first time, we have developed the controlled synthesis of quinary Cu3NiInSnS6 nanocrystals, realizing the selective preparation of hexagonal wurtzite and cubic zinc blende metastable phases by simply tuning the sulfur source. The phase structure analysis reveals that both metastable phases possess a disordered structure with a random distribution of metal atoms in the unit cells. The fabricated wurtzite and zinc blende-structure Cu3NiInSnS6 nanocrystals have a direct band gap of 1.82 and 1.94 eV, respectively, and both exhibit superparamagnetic behavior at low temperatures. This work is of great significance for the development of novel multifunctional materials based on metastable multinary metal chalcogenide phases.

11.
J Colloid Interface Sci ; 616: 401-412, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35220187

ABSTRACT

Two-dimensional (2D) layered materials hold great promise for electrochemical energy storage due to their unique structure. It is always desirable to explore new-type high-performance 2D structured electrode materials in energy field. In this work, layered transition-metal chalcogenophosphite is developed as the electrode material for supercapacitors for the first time. NiPS3 nanosheet arrays are successfully in-situ grown on carbon cloth via a chemical vapor deposition method, and then directly used as the self-supported electrode for supercapacitors. The fabricated carbon cloth supported NiPS3 nanosheet arrays offer obviously superior electrochemical performance to the powdery NiPS3 nanosheets sample. The self-supported NiPS3 electrode exhibits a high specific capacitance of 1148F g-1 at a current density of 1 A g-1, and a good cycling stability with capacitance retention of 81.4% over 5000 cycles at 10 A g-1. Moreover, the assembled asymmetric supercapacitor device delivers a specific capacitance of 61.3F g-1 at a current density of 1 A g-1, and an energy density of 19.2 Wh kg-1 at a power density of 750 W kg-1 with a voltage window of 1.5 V. This work is of great significance for pioneering the application of 2D transition-metal chalcogenophosphites in supercapacitors.

12.
J Colloid Interface Sci ; 612: 760-771, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35030347

ABSTRACT

Lithium sulfur (Li-S) batteries are regarded as one of the most promising future energy storage candidates on account of high theoretical specific capacity of 1675 mAh g-1 and energy density of 2600 Wh kg-1. However, their practical application is seriously hindered due to the poor conductivity and volume expansion of sulfur, the weak redox kinetics of lithium polysulfide (LPS), and the severe shuttle effect of LPS. Herein, V2O3@N,Ni-C nanostructures, multiply integrated with zero-dimensional (0D) V2O3 nanoparticles, 1D carbon nanotubes, 2D carbon coating layers and graphene, 3D hollow spheres, and doped N and Ni heteroatoms, were synthesized via a solvothermal method followed by chemical vapor deposition. After being used as a modifier for traditional commercial separator of Li-S batteries, the shuttle effect of LPS can be effectively suppressed owing to the abundant active physical and chemical adsorption sites derived from large specific surface area, rich porosity, and tremendous polarity of the V2O3 nanoparticles with multiple secondary nanostructure integration. Meanwhile, the transfer of Li+ ions and electrons can be effectively enhanced by the highly conductive 2D carbon network, and the kinetics of redox reaction (Li2Sn â†” Li2S) can be accelerated by the doped N and Ni heteroatoms, leading to a synergistic promotion on the reutilization of the adsorbed LPS. Additionally, the unique 3D hollow structure can not only enhance the penetration of electrolyte, but also buffer the volume expansion of sulfur to some extent. Therefore, the rate capacity and cycling performance can be significantly enhanced by the multifunction synergism of adsorption, conductivity, catalysis, and volume buffering. An initial discharge capacity of 1590.4 mAh g-1can be achieved at 0.1C, and the discharge capacity of 803.5 mAh g-1can be still exhibited when increasing to 2C. After a long period of 500 cycles, additionally, the discharge specific capacity of 1142.2 mAh g-1 and capacity attenuation of 0.0617% per cycle can be obtained at 1C.

13.
J Colloid Interface Sci ; 610: 560-572, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34838317

ABSTRACT

Binding and trapping of lithium polysulfide (LPS) are being conceived as the most effective strategies to improve lithium-sulfur (Li-S) battery performance. Therefore, exploiting a simple but cost-effective approach for the absorption and conversion of LPS and the transfer of electrons and Li+ ions is of paramount importance. Herein, sandwich structure MWCNTs@N-doped-C@CoS2 integrated with multiple nanostructures of zero-dimensional (0D) CoS2 nanoparticles, 1D carbon nanotubes (CNTs), and 2D N-doped amorphous carbon layer was obtained, where MWCNTs was firstly uniformly attached with a polydopamine (PDA) of excellent adhesion, followed by hydrothermal method, the Co2+ nanoparticles were in-situ grown on the PDA by the formation of complex compound of Co2+ and N atoms in PDA, and then the CoS2 nanoparticles were in-situ grown on CNTs in a point-surface contact way by a bridging of N-doped amorphous carbon layer derived from the carbonization of attached PDA after the vulcanization at 500 °C under Ar atmosphere. The multifunction synergism of absorption, conductivity, and the kinetics of LPS redox is significantly improved, consequently effectively suppressing the shuttle effect and tremendously increasing the utilization rate of active substance. For the Li-S battery assembled with MWCNTs@N-doped-C@CoS2-modified separator, its rate capacity and cycling performance can be greatly enhanced. It can exhibit a high initial discharge capacity of 1590 mAh g-1 at 0.1 C, a stable long-term cycling performance with a relatively low capacity decay of 0.07% per cycle during 500 cycles at 1 C, and a reversible capacity of 772 mAh g-1 and a capacity decay of 0.04% per cycle during 250 cycles at 2 C. Even at a large current density of 4 C, an initial specific discharge capacity of 634 mAh g-1 can still be delivered. With a high sulfur loading of 5.0 mg cm-2, additionally, an outstanding cycling stability can also be well maintained at 685 mAh g-1 at 0.1 C after 50 cycles. This work provides a novel and simple but effective strategy to develop such sandwich hybrid materials comprised of polar metal sulfides and conductive networks via an effective bridging to help realize durable and stable Li-S battery.

14.
CNS Neurosci Ther ; 27(10): 1127-1135, 2021 10.
Article in English | MEDLINE | ID: mdl-34132473

ABSTRACT

AIMS: To determine if neurologic symptoms at admission can predict adverse outcomes in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Electronic medical records of 1053 consecutively hospitalized patients with laboratory-confirmed infection of SARS-CoV-2 from one large medical center in the USA were retrospectively analyzed. Univariable and multivariable Cox regression analyses were performed with the calculation of areas under the curve (AUC) and concordance index (C-index). Patients were stratified into subgroups based on the presence of encephalopathy and its severity using survival statistics. In sensitivity analyses, patients with mild/moderate and severe encephalopathy (defined as coma) were separately considered. RESULTS: Of 1053 patients (mean age 52.4 years, 48.0% men [n = 505]), 35.1% (n = 370) had neurologic manifestations at admission, including 10.3% (n = 108) with encephalopathy. Encephalopathy was an independent predictor for death (hazard ratio [HR] 2.617, 95% confidence interval [CI] 1.481-4.625) in multivariable Cox regression. The addition of encephalopathy to multivariable models comprising other predictors for adverse outcomes increased AUCs (mortality: 0.84-0.86, ventilation/ intensive care unit [ICU]: 0.76-0.78) and C-index (mortality: 0.78 to 0.81, ventilation/ICU: 0.85-0.86). In sensitivity analyses, risk stratification survival curves for mortality and ventilation/ICU based on severe encephalopathy (n = 15) versus mild/moderate encephalopathy (n = 93) versus no encephalopathy (n = 945) at admission were discriminative (p < 0.001). CONCLUSIONS: Encephalopathy at admission predicts later progression to death in SARS-CoV-2 infection, which may have important implications for risk stratification in clinical practice.


Subject(s)
Brain Diseases/diagnosis , Brain Diseases/mortality , COVID-19/diagnosis , COVID-19/mortality , Patient Admission/trends , Adult , Aged , Brain Diseases/therapy , COVID-19/therapy , Cohort Studies , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies
15.
ACS Appl Mater Interfaces ; 13(19): 22785-22795, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33960767

ABSTRACT

Here, CdS@C nanohybrid composites, where CdS quantum dots (QDs) are uniformly embedded in carbon micro-/nanobelt matrixes, are synthesized via a combustion synthesis followed by a postvulcanization. In the nanohybrids, trap centers are effectively created by the introduction of QDs and moreover their barrier height and filling level can be effectively modulated through a coupling of externally loaded strain and bias. Thus, a single CdS@C micro-/nanobelt-based two-terminal device can exhibit an ultrahigh real-time response to compressive and tensile strains with a tremendous gauge factor of above 104, high sensitivity, and fast response and recovery. More importantly, the trapped charges can be mechanically excited by stress, and furthermore, the stress-triggered high-resistance state can be well-maintained at room temperature and a relatively low operation bias. However, it can be back to its initial low resistance state by loading a relatively large bias, showing a superior erasable stress memory function with a window of about 103. By an effective construction of trap centers in hybrid composites, not only can an ultrahigh performance of volatile real-time stress sensor be obtained under the synergism of external stress and electric field but also can an outstanding erasable nonvolatile stress memory be successfully realized.

16.
Nanoscale ; 13(10): 5369-5382, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33660720

ABSTRACT

Near-infrared (NIR) light-induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in photothermal therapy systems, a variety of photothermal agents have been developed. However, the exploration of novel photothermal therapy nanoplatforms with high NIR absorption remains a significant challenge, especially those working in both NIR-I and NIR-II windows. In this work, Bi19S27I3 nanorods with remarkably high absorption covering the whole visible light to the entire NIR-I and NIR-II regions have been successfully prepared through a facile solvothermal approach. The as-synthesized Bi19S27I3 nanorods have a high photothermal conversion efficiency of 42.7% at 808 nm (NIR-I) and 41.5% at 1064 nm (NIR-II), making them a promising candidate for photothermal therapy. In vitro cell viability assay reveals that the Bi19S27I3 sample has good biocompatibility and exhibits significant cell-killing effect under NIR irradiation. In vivo anti-tumor experiments demonstrate that the tumor growth can be effectively inhibited by fatal hyperthermia ablation mediated by Bi19S27I3 nanorods under the irradiation of an 808 nm or 1064 nm laser. Therefore, this study should be primarily beneficial for the development of new materials for NIR photothermal therapy applications.


Subject(s)
Nanostructures , Nanotubes , Neoplasms , Humans , Lasers , Neoplasms/therapy , Phototherapy , Photothermal Therapy
17.
Korean J Radiol ; 22(7): 1213-1224, 2021 07.
Article in English | MEDLINE | ID: mdl-33739635

ABSTRACT

OBJECTIVE: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. MATERIALS AND METHODS: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. RESULTS: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. CONCLUSION: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.


Subject(s)
COVID-19/diagnosis , Machine Learning , Severity of Illness Index , Tomography, X-Ray Computed/methods , Critical Illness , Humans , Male , Middle Aged , ROC Curve , Retrospective Studies , SARS-CoV-2/pathogenicity
18.
Neuro Oncol ; 22(10): 1536-1544, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32215549

ABSTRACT

BACKGROUND: Although the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group has made recommendations for response assessment in patients with medulloblastoma (MBL) and leptomeningeal seeding tumors, these criteria have yet to be evaluated. METHODS: We examined MR imaging and clinical data in a multicenter retrospective cohort of 269 patients with MBL diagnoses, high grade glioma, embryonal tumor, germ cell tumor, or choroid plexus papilloma. Interobserver agreement, objective response (OR) rates, and progression-free survival (PFS) were calculated. Landmark analyses were performed for OR and progression status at 0.5, 1.0, and 1.5 years after treatment initiation. Cox proportional hazards models were used to determine the associations between OR and progression with overall survival (OS). Subgroup analyses based on tumor subgroup and treatment modality were performed. RESULTS: The median follow-up time was 4.0 years. In all patients, the OR rate was .0.565 (95% CI: 0.505-0.625) by RAPNO. The interobserver agreement of OR determination between 2 raters (a neuroradiologist and a neuro-oncologist) for the RAPNO criteria in all patients was 83.8% (k statistic = 0.815; P < 0.001). At 0.5-, 1.0-, and 1.5-year landmarks, both OR status and PFS determined by RAPNO were predictive of OS (hazard ratios [HRs] for 1-year landmark: OR HR = 0.079, P < 0.001; PFS HR = 10.192, P < 0.001). In subgroup analysis, OR status and PFS were predictive of OS for all tumor subtypes and treatment modalities. CONCLUSION: RAPNO criteria showed excellent consistency in the treatment response evaluation of MBL and other leptomeningeal seeding tumors. OR and PFS determined by RAPNO criteria correlated with OS.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Meningeal Neoplasms , Cerebellar Neoplasms/diagnostic imaging , Child , Disease-Free Survival , Humans , Magnetic Resonance Imaging , Medulloblastoma/diagnostic imaging , Meningeal Neoplasms/diagnostic imaging , Retrospective Studies
19.
Inorg Chem ; 58(22): 15283-15290, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31701750

ABSTRACT

For the first time, quaternary chalcogenide CuNi2InS4 nanocrystals with a wurtzite structure have been designed and fabricated as a new magnetic semiconductor. The phase structure analysis suggests that the synthesized wurtzite CuNi2InS4 phase has a disordered structure in which Cu+, Ni2+, and In3+ ions share the same lattice site of the unit cell with a random cation distribution. The prepared CuNi2InS4 nanocrystals have uniform bullet-like morphology, small size distribution, good monodispersity, and high crystallinity. The magnetic properties investigation reveals that the wurtzite CuNi2InS4 nanocrystals can exhibit a weak ferromagnetic moment with the blocking temperature at around 13 K thanks to the disordered wurtzite structure and the high content of magnetic Ni2+ ions. As for the semiconducting properties, the as-obtained wurtzite CuNi2InS4 nanocrystals show a strong and broad visible light absorption and have a direct bandgap of 1.45 eV. Due to their favorable optical properties, the fabricated thin film of CuNi2InS4 nanocrystals exhibits a good photoelectric response to the solar spectrum, which makes the obtained new phase potential candidate for applications in the photovoltaics. This work demonstrates a new metastable I-II2-III-VI4 chalcogenide that can be used to render multiple functionalities and applications.

20.
ACS Appl Mater Interfaces ; 11(16): 14932-14943, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30920194

ABSTRACT

ZnO nanostructures are exceedingly important building blocks for nanodevices due to their wide band gap and large exciton binding energy. However, their electronic transport characteristics are unstable and unrepeatable with external environment variation. Here, we demonstrate that electron transport of an individual ZnO nanowire-based device with the two same electrodes can be controllably modulated by applying a relatively large uni-/bidirectional bias. After being modulated, moreover, their electrical properties can well be maintained at relatively low operation bias and room temperature, demonstrating a memory behavior. The presence of surface states related to lattice periodicity breaking and traps associated with oxygen vacancy (Vo) and zinc interstitial (Zni) deep-level defects plays a crucial role in tunable electron transport with a memory feature. For the single nanowire-based two-terminal device, two back-to-back connected surface barrier diodes with series resistance are formed. The filling and emptying of traps near two end electrodes can remarkably adjust the width and height of the surface barrier. At a relatively low bias, the unmodulated conductance is governed by the electron hopping of bulk traps since the height of emptied traps is higher than that of the surface barrier, whereas at a relatively large bias, it is dominated by thermion emission due to a dramatic decrease of the surface barrier width resulting from the electron injection into traps from a negative electrode. Moreover, it will be beneficial for a thin surface barrier to penetrate UV light and separate photoexcited electron-hole pairs. After being asymmetrically modulated by a unidirectional injection, it can be successfully applied to realize a self-driven UV photodetector based on a photovoltaic effect in the symmetrical two-electrode structure. Our work provides a new route to tune electrical properties of nanostructures, which may inspire the development of novel electronic and optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...