Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Interferon Cytokine Res ; 42(4): 170-179, 2022 04.
Article in English | MEDLINE | ID: mdl-35438528

ABSTRACT

The purpose of this experiment is to find out the function of Vitamin D (VD) in airway inflammation in asthmatic guinea pigs by regulating mammalian target of rapamycin (mTOR)-mediated autophagy. A total of 40 male guinea pigs were randomly assigned into the Con group, the ovalbumin (OVA)-sensitized group, the VD group, the VD + dimethyl sulfoxide group, and the VD + rapamycin (mTOR inhibitor) group. Then, serum from all groups was harvested for the measurement of immunoglobulin E (IgE), interleukin (IL)-4, and IL-5 levels. Next, bronchoalveolar lavage fluid was collected for cell counting. Moreover, lung tissues were extracted to assess levels of p-mTOR and autophagy factors (LC3B, Beclin1, Atg5, and P62). Compared with the Con group, the OVA group showed elevated levels of IgE, IL-4, and IL-5, increased contents of eosinophils, neutrophil, and lymphocytes, and declined monocytes. And the VD group improved inflammatory reactions in the guinea pigs. Besides, the OVA group showed lower levels of p-mTOR and P62 and higher autophagy levels than the Con group, while the VD group had opposite results. Rapamycin annulled the suppressive role of VD to airway inflammation in asthmatic guinea pigs. VD might inhibit OVA-induced airway inflammation by inducing mTOR activation and downregulating autophagy in asthmatic guinea pigs.


Subject(s)
Asthma , Inflammation , Vitamin D , Animals , Asthma/drug therapy , Autophagy , Disease Models, Animal , Female , Guinea Pigs , Immunoglobulin E , Inflammation/drug therapy , Interleukin-5 , Lung , Male , Mammals , Ovalbumin , Sirolimus , TOR Serine-Threonine Kinases , Vitamin D/therapeutic use
2.
Kaohsiung J Med Sci ; 37(12): 1113-1121, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34460994

ABSTRACT

Asthma is regarded as a chronic inflammation of the airway. Research has highlighted the significance of Vitamin D in asthma. This study explored the mechanism of vitamin D on asthma. The asthma mouse model was established by ovalbumin (OVA) sensitization and treated with vitamin D (50 or 100 ng/ml). The morphological changes of the airway were observed by HE staining. The serum IgE contents and MDA, ROS, and SOD expressions in the bronchoalveolar lavage fluid (BALF) were detected by ELISA. The Th17 and Treg cells were detected using flow cytometry. The RORγt and Foxp 3 expressions were detected by Reverse transcription quantitative polymerase chain reaction (RT-qPCR). IL-17, IL-10, and TGF-ß1 expressions were detected using ELISA. The NF-κB pathway was blocked using the NF-κB pathway inhibitor, Andrographolide sulfonate. The NF-κB pathway-related indexes were detected by western blotting. After blockade of the NF-κB pathway, the IL-17, IL-10, and TGF-G1 expressions were detected. OVA-sensitized asthma induced airway remodeling and elevated IgE content in mice, which was downregulated after vitamin D treatment. MDA and ROS were upregulated and SOD was downregulated in asthmatic mice, while vitamin D inverted the changes. Th17/Treg ratio was imbalanced, RORγt and IL-17 were upregulated, and Foxp 3, IL-10, and TGF-ß1 were downregulated after OVA sensitization, while vitamin D treatment inverted these changes and inhibited the NF-κB-p65 phosphorylation level. After blockade of the NF-κB pathway, IL-17 was downregulated and IL-10 and TGF-ß1 were upregulated. In conclusion, vitamin D rectified the Th17/Treg balance and alleviated airway inflammation by inhibiting the NF-κB pathway in asthmatic mice.


Subject(s)
Asthma/drug therapy , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Vitamin D/therapeutic use , Animals , Asthma/immunology , Asthma/metabolism , Male , Mice , Mice, Inbred BALB C , NF-kappa B/physiology , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , T-Lymphocytes, Regulatory/drug effects , Th17 Cells/drug effects , Vitamin D/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...