Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Pharmacol ; 14: 1219486, 2023.
Article in English | MEDLINE | ID: mdl-37745084

ABSTRACT

The study aimed to investigate the protective effects and biological mechanisms of glycyrrhizin arginine salt (Gly-Arg) against cisplatin (Cis)-induced liver injury. Our data showed that Gly-Arg improved Cis-induced liver injury. Further study showed that BECN1 (beclin1) and LC3-II/LC3-I protein expression was significantly increased in primary hepatocytes and mouse liver tissues after Cis treatment, but Gly-Arg reduced the protein levels of BECN1 and LC3-II/LC3-I in primary hepatocytes and mouse liver tissues. Also, Gly-Arg improved indicators related to Cis-induced ferroptosis. Furthermore, Cis increased colocalization of lysosomal membrane-associated protein 1A (LAMP1) with ferritin heavy chain 1 (FTH1) in primary mouse hepatocytes, while Gly-Arg intervention attenuated this colocalization in primary hepatocytes. More improtantly, Cis enhanced the formation of the BECN1-xCT complex, thus inhibiting solute carrier family 7 member 11 (SLC7A11, xCT) and glutathione peroxidase-4 (GPX4) activity. In contrast, Gly-Arg intervention disrupted the formation of this complex. However, Gly-Arg alleviated Cis-induced liver injury in mice by preventing autophagic death and ferroptosis through the inhibition of BECN1-xCT complex formation.

2.
Front Pharmacol ; 14: 1125547, 2023.
Article in English | MEDLINE | ID: mdl-36909198

ABSTRACT

The high morbidity and mortality of non-small cell lung cancer (NSCLC) have always been major threats to people's health. With the identification of carcinogenic drivers in non-small cell lung cancer and the clinical application of targeted drugs, the prognosis of non-small cell lung cancer patients has greatly improved. However, in a large number of non-small cell lung cancer cases, the carcinogenic driver is unknown. Identifying genetic alterations is critical for effective individualized therapy in NSCLC. Moreover, targeted drugs are difficult to apply in the clinic. Cancer drug resistance is an unavoidable obstacle limiting the efficacy and application of targeted drugs. This review describes the mechanisms of targeted-drug resistance and newly identified non-small cell lung cancer targets (e.g., KRAS G12C, NGRs, DDRs, CLIP1-LTK, PELP1, STK11/LKB1, NFE2L2/KEAP1, RICTOR, PTEN, RASGRF1, LINE-1, and SphK1). Research into these mechanisms and targets will drive individualized treatment of non-small cell lung cancer to generate better outcomes.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120028, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34119768

ABSTRACT

A novel visual nanoprobe was developed for the sequential detection of morin and zinc ion (Zn2+) based on Cl and N co-doped carbon quantum dots (ClNCQDs) via a fluorometric and colorimetric dual-readout mode. The yellow fluorescence ClNCQDs was synthesized by the one-step hydrothermal treatment of o-chlorobenzoic acid and p-phenylenediamine. The most distinctive property of the ClNCQDs is the large stokes shift (177 nm), which is significantly higher than other reported CQDs. The fluorescence of the ClNCQDs can be effectively quenched by morin based on the synergistic effect of IFE, electrostatic interaction, and dynamic quenching process, and recovered upon the addition of Zn2+ due to strong interaction between morin and Zn2+. The nanoprobe exhibited favorable selectivity and sensitivity toward morin and Zn2+ with detection limits of 0.09 µM and 0.17 µM, respectively. Simultaneously, the color of the ClNCQDs solution was changed (light-pink â†’ faint-yellow â†’ dark-yellow) along with the variation of the fluorescence signal of the ClNCQDs. This proposed nanoprobe was successfully applied for morin and Zn2+ analyses in actual samples and live cells with high accuracy. The results of this study demonstrate the great application prospects of the ClNCQDs for morin and Zn2+ detection in complex actual samples and biosystems.


Subject(s)
Quantum Dots , Carbon , Colorimetry , Flavonoids , Limit of Detection , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...