Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 14(22): 10014-10030, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37840453

ABSTRACT

This study investigated the potential benefits of black chokeberry polyphenol (BCP) supplementation on lipopolysaccharide (LPS)-stimulated inflammatory response in RAW264.7 cells and obesity-induced colonic inflammation in a high fat diet (HFD)-fed rat model. Our findings demonstrated that BCP treatment effectively reduced the production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and MCP-1) in LPS-induced RAW264.7 cells and concurrently mitigated oxidative stress by modulating the levels of malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px) in a dose-dependent manner. Furthermore, BCP supplementation significantly ameliorated HFD-induced obesity, improved glucose tolerance, and reduced systemic inflammation in HFD-fed rats. Notably, BCP treatment suppressed the mRNA expression of pro-inflammatory cytokines and alleviated intestinal barrier dysfunction by regulating the mRNA and protein expression of key tight junction proteins (ZO-1, occludin, and claudin-1), thereby inhibiting colonic inflammation caused by the TLR4/NF-κB signaling pathway. Additionally, BCP treatment altered the composition and function of the gut microbiota, leading to an increase in the total content of short-chain fatty acids (SCFAs), particularly acetic acid, propionic acid, isobutyric acid, and butyric acid. Collectively, our results highlighted the potential of BCP supplementation as a promising prebiotic strategy for treating obesity-induced colonic inflammation.


Subject(s)
Gastrointestinal Microbiome , Photinia , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Diet, High-Fat/adverse effects , Photinia/metabolism , Toll-Like Receptor 4/genetics , Lipopolysaccharides/pharmacology , Polyphenols/pharmacology , Obesity/metabolism , Inflammation/metabolism , Signal Transduction , Cytokines/metabolism , RNA, Messenger
2.
Front Nutr ; 9: 913729, 2022.
Article in English | MEDLINE | ID: mdl-35990329

ABSTRACT

Black chokeberry (Aronia melanocarpa L.) is rich in polyphenols with various physiological and pharmacological activities. However, the relationship between the modulation effect of black chokeberry polyphenols on obesity and the alteration of lipid metabolism is not clearly understood. This study aimed to investigate the beneficial effects of the black chokeberry polyphenols (BCPs) treatment on the structure of gut microbiota, lipid metabolism, and associated mechanisms in high-fat diet (HFD)-induced obese rats. Here, we found that a high-fat diet promoted body weight gain and lipid accumulation in rats, while oral BCPs supplementation reduced body weight, liver, and white adipose tissue weight and alleviated dyslipidemia and hepatic steatosis in HFD-induced obese rats. In addition, BCPs supplementation prevented gut microbiota dysbiosis by increasing the relative abundance of Bacteroides, Prevotella, Romboutsia, and Akkermansia and decreasing the relative abundance of Desulfovibrio and Clostridium. Furthermore, 64 lipids were identified as potential lipid biomarkers through lipidomics analysis after BCPs supplementation, especially PE (16:0/22:6), PE (18:0/22:6), PC (20:3/19:0), LysoPE (24:0), LysoPE (24:1), and LysoPC (20:0). Moreover, our studies provided new evidence that composition of gut microbiota was closely related to the alteration of lipid profiles after BCPs supplementation. Additionally, BCPs treatment could ameliorate the disorder of lipid metabolism by regulating the mRNA and protein expression of genes related to the glycerophospholipid metabolism signaling pathway in HFD-induced obese rats. The mRNA and protein expression of PPARα, CPT1α, EPT1, and LCAT were significantly altered after BCPs treatment. In conclusion, the results of this study indicated that BCPs treatment alleviated HFD-induced obesity by modulating the composition and function of gut microbiota and improving the lipid metabolism disorder via the glycerophospholipid metabolism signaling pathway.

3.
Nutr Metab (Lond) ; 17: 54, 2020.
Article in English | MEDLINE | ID: mdl-32655675

ABSTRACT

The gut microbiota plays a critical role in obesity and lipid metabolism disorder. Chokeberry (Aronia melanocarpa L.) are rich in polyphenols with various physiological and pharmacological activities. We determined serum physiological parameters and fecal microbial components by using related kits, liquid chromatography-mass spectrometry (LC-MS) and 16S rRNA gene sequencing every 10 days. Real-time PCR analysis was used to measure gene expression of bile acids (BAs) and lipid metabolism in liver and adipose tissues. We analyzed the effects of different Chokeberry polyphenol (CBPs) treatment time on obesity and lipid metabolism in high fat diet (HFD)-fed rats. The results indicated that CBPs treatment prevents obesity, liver steatosis and improves dyslipidemia in HFD-fed rats. CBPs modulated the composition of the gut microbiota with the extended treatment time, reducing the Firmicutes/Bacteroidetes ratio (F/B ratio) and increasing the relative abundance of Bacteroides, Prevotella, Akkermansia and other bacterial species associated with anti-obesity properties. We found that CBPs treatment gradually decreased the total BAs pool and particularly reduced the relative content of cholic acid (CA), deoxycholic acid (DCA) and enhanced the relative content of chenodeoxycholic acid (CDCA). These changes were positively correlated Bacteroides, Prevotella and negatively correlated with Clostridium, Eubacterium, Ruminococcaceae. In liver and white adipose tissues, the gene expression of lipogenesis, lipolysis and BAs metabolism were regulated after CBPs treatment in HFD-fed rats, which was most likely mediated through FXR and TGR-5 signaling pathway to improve lipid metabolism. In addition, the mRNA expression of PPARγ, UCP1 and PGC-1α were upregulated markedly in interscapular brown adipose tissue (iBAT) after CBPs treatment. We confirmed that CBPs could reduce the body weight of HFD-fed rats by accelerating energy homeostasis and thermogenesis in iBAT. Finally, the fecal microbiota transplantation (FMT) experiment results demonstrated that FMT from CBPs-treated rats failed to reduce the weight of HFD-fed rats. However, FMT from CBPs-treated rats improved dyslipidemia and reshaped gut microbiota in HFD-fed rats. In conclusion, CBPs treatment improved obesity and complications by regulating gut microbiota in HFD-fed rats. The gut microbiota plays an important role in BAs metabolism after CBPs treatment, and BAs have therefore emerged as major effectors in microbe-host signaling events that influence host lipid metabolism, energy metabolism and thermogenesis.

4.
Leuk Lymphoma ; 52(4): 694-700, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21261505

ABSTRACT

We investigated the effects of neferine (Nef) on STI571 sensitivity and the possible mechanism in STI571-resistant K562/G01 cells. We observed cell proliferation by the modified MTT (methyl thiazolyl tetrazolium) assay. We determined the intracellular concentration of STI571 in K562/G01 cells by high-performance liquid chromatography (HPLC), the expression of P-glycoprotein (P-gp) by Western blotting, and the expression of MDR-1 mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR). We observed that drug resistance to STI571 for K562/G01 cells was 43.99-fold higher than that for K562 cells. We also observed that a low concentration of Nef (<8 µM) and verapamil hydrochloride (VRP) (<10 µM) showed no direct cytotoxicity but significantly reduced the 50% cell growth inhibitory concentration (IC(50)) values of STI571 in K562/G01 cells. The reverse multiples for 8 µM Nef and 10 µM VRP were approximately two-fold. Both Nef (8 µM) and VRP (10 µM) decreased MDR-1 mRNA and P-gp protein expression and increased intracellular STI57I concentrations significantly in K562/G01 cells. Nef is a candidate chemical that can increase STI571 chemosensitivity in STI571-resistant K562 cells by inhibition of P-gp expression and increasing intracellular STI571 accumulation.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Benzylisoquinolines/pharmacology , Drug Resistance, Neoplasm/drug effects , Piperazines/pharmacology , Pyrimidines/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Benzamides , Cell Survival/drug effects , Drug Synergism , Gene Expression Regulation, Leukemic/drug effects , Humans , Imatinib Mesylate , K562 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...