Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202405222, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729920

ABSTRACT

The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid-catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives have been established. The first hetero-(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3-catalyzed [2π+2σ] reaction with 1,1,2-trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E-1,1,2-trisubstituted alkenes. Additionally, the hetero-(4+3) cycloaddition may involve a concerted nucleophilic ring-opening mechanism.

2.
J Am Chem Soc ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739092

ABSTRACT

For nearly 60 years, significant research efforts have been focused on developing strategies for the cycloaddition of bicyclobutanes (BCBs). However, higher-order cycloaddition and catalytic asymmetric cycloaddition of BCBs have been long-standing formidable challenges. Here, we report Pd-catalyzed ligand-controlled, tunable cycloadditions for the divergent synthesis of bridged bicyclic frameworks. The dppb ligand facilitates the formal (5+3) cycloaddition of BCBs and vinyl oxiranes, yielding valuable eight-membered ethers with bridged bicyclic scaffolds in 100% regioselectivity. The Cy-DPEphos ligand promotes selective hetero-[2σ+2σ] cycloadditions to access pharmacologically important 2-oxabicyclo[3.1.1]heptane (O-BCHeps). Furthermore, the corresponding catalytic asymmetric synthesis of O-BCHeps with 94-99% ee has been achieved using chiral (S)-DTBM-Segphos, representing the first catalytic asymmetric cross-dimerization of two strained rings. The obtained O-BCHeps are promising bioisosteres for ortho-substituted benzenes.

3.
Angew Chem Int Ed Engl ; : e202408578, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818620

ABSTRACT

Bridged cyclobutanes and sulfur heterocycles are currently under intense investigation as building blocks for pharmaceutical drug design. Two formal cycloaddition modes involving bicyclobutanes (BCBs) and pyridinium 1,4-zwitterionic thiolate derivatives were described to rapidly expand the chemical space of sulfur-containing bridged cyclobutanes. By using Ni(ClO4)2 as the catalyst, an uncommon higher-order (5+3) cycloaddition of BCBs with quinolinium 1,4-zwitterionic thiolate was achieved with broad substrate scope under mild reaction conditions. Furthermore, the first Lewis acid-catalyzed asymmetric polar (5+3) cycloaddition of BCB with pyridazinium 1,4-zwitterionic thiolate was accomplished. In contrast, pyridinium 1,4-zwitterionic thiolates undergo an Sc(OTf)3-catalyzed formal (3+3) reaction with BCBs to generate thia-norpinene products, which represent the initial instance of synthesizing 2-thiabicyclo[3.1.1]heptanes (thia-BCHeps) from BCBs. Moreover, we have successfully used this (3+3) protocol to rapidly prepare thia-BCHeps-substituted analogues of the bioactive molecule Pitofenone. Density functional theory (DFT) computations imply that kinetic factors govern the (5+3) cycloaddition reaction between BCB and quinolinium 1,4-zwitterionic thiolate, whereas the (3+3) reaction involving pyridinium 1,4-zwitterionic thiolates is under thermodynamic control.

4.
Chem Sci ; 14(45): 13060-13066, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38023515

ABSTRACT

Although ring-opening reactions of bicyclobutanes bearing electron-withdrawing groups, typically with ß-selectivity, have evolved as a powerful platform for synthesis of cyclobutanes, their application in the synthesis of cyclobutenes remains underdeveloped. Here, a novel visible light induced α-selective radical ring-opening reaction of 1,3-disubstituted acyl bicyclobutanes with alkyl radical precursors for the synthesis of functionalized cyclobutenes is described. In particular, primary, secondary, and tertiary alkyl halides are all suitable substrates for this photocatalytic transformation, providing ready access to cyclobutenes with a single all-carbon quaternary center, or with two contiguous centers under mild reaction conditions.

5.
Angew Chem Int Ed Engl ; 62(48): e202310066, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37822277

ABSTRACT

Bicyclo[2.1.1]hexanes (BCHs) are becoming ever more important in drug design and development as bridged scaffolds that provide underexplored chemical space, but are difficult to access. Here a silver-catalyzed dearomative [2π+2σ] cycloaddition strategy for the synthesis of indoline fused BCHs from N-unprotected indoles and bicyclobutane precursors is described. The strain-release dearomative cycloaddition operates under mild conditions, tolerating a wide range of functional groups. It is capable of forming BCHs with up to four contiguous quaternary carbon centers, achieving yields of up to 99 %. In addition, a scale-up experiment and the synthetic transformations of the cycloadducts further highlighted the synthetic utility.

6.
Chem Sci ; 14(36): 9696-9703, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37736637

ABSTRACT

Ring-opening of bicyclo[1.1.0]butanes (BCBs) is emerging as a powerful strategy for 1,3-difunctionalized cyclobutane synthesis. However, reported radical strain-release reactions are typically plagued with diastereoselectivity issues. Herein, an atom-economic protocol for the highly chemo- and diastereoselective polar strain-release ring-opening of BCBs with hydroxyarenes catalyzed by a π-acid catalyst AgBF4 has been developed. The use of readily available starting materials, low catalyst loading, high selectivity (up to >98 : 2 d.r.), a broad substrate scope, ease of scale-up, and versatile functionalizations of the cyclobutane products make this approach very attractive for the synthesis of 1,1,3-trisubstituted cyclobutanes. Moreover, control experiments and theoretical calculations were performed to illustrate the reaction mechanism and selectivity.

7.
Chem Sci ; 14(21): 5608-5618, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37265723

ABSTRACT

Carboacyloxylation of internal alkynes is emerging as a powerful and straightforward strategy for enol ester synthesis. However, the reported examples come with limitations, including the utilization of noble metal catalysts, the control of regio- and Z/E selectivity, and an application in the synthesis of enol carbonates. Herein, a boron Lewis acid-catalyzed intermolecular carboacyloxylation of ynamides with esters to access fully substituted acyclic enol esters in high yield with generally high Z/E selectivity (up to >96 : 4) is reported. Most importantly, readily available allylic carbonates are also compatible with this difunctionalization reaction, representing an atom-economic, catalytic and stereoselective protocol for the construction of acyclic ß,ß-disubstituted enol carbonates of amides for the first time. The application of the carboacyloxylation products to decarboxylative allylations provided a ready access to enantioenriched α-quaternary amides. Moreover, experimental studies and theoretical calculations were performed to illustrate the reaction mechanism and rationalize the stereochemistry.

8.
Org Lett ; 24(14): 2619-2624, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35389667

ABSTRACT

An atom-economic protocol for the efficient and highly chemo- and stereoselective trans-hydroarylation of ynamides with hydroxyarenes catalyzed by B(C6F5)3 has been developed. Use of readily available starting materials, low catalyst loading, mild reaction conditions, a broad substrate scope, ease of scale-up, and versatile functionalizations of the enamide products make this approach very practical and attractive.

9.
Org Lett ; 21(14): 5634-5638, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31251641

ABSTRACT

The direct use of ammonia in transition-metal promoted C-H bond amination for the synthesis of primary amines is considered to be one of the major challenges in synthetic organic chemistry. Herein, we report that such transformation can be successfully achieved via nickel-promoted amination of inert arene C-H bonds with ammonia gas assisted by an 8-amino-quinoline directing group.

SELECTION OF CITATIONS
SEARCH DETAIL
...