Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38541481

ABSTRACT

In hydroforming of parallel double-branch tubes, the material entering the branch zone is obstructed by material accumulation in the main tubes and corners, which decreases the branch height. A tube hydroforming approach is combined with pre-forming and crushing (THPC) to mitigate this problem. A larger diameter tube blank is flattened for pre-forming and then subjected to radial compression for crushing. In the next step, hydroforming forms the parallel double-branch tubes. Experiments and numerical simulations are then carried out to analyze the effect of traditional tube hydroforming (TTH) and the proposed THPC process on the formability of parallel double-branch tubes. The results show that for tubes obtained via THPC, the tube burst pressure increases by 27.5% and the branch height increases 2.37-fold compared to TTH. Additionally, the flattening, pre-forming, and crushing stages cause work hardening of the tube when using the TPHC process. Flattened tubes undergo radial compression to improve the material flowing into the branch tube. The formability of parallel double-branched tubes can be improved by using the TPHC process. Consequently, tube hydroforming, combined with pre-forming and crushing, has been confirmed as a feasible forming process for fabricating parallel double-branch tubes.

SELECTION OF CITATIONS
SEARCH DETAIL
...