Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine ; 42: 102538, 2022 06.
Article in English | MEDLINE | ID: mdl-35183762

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is the major form of chronic liver disease in adults; however, there are no approved drugs for NASH. In this study, we designed the PNM-G-PV method, in which gelatin nanoparticles (G) are loaded with pioglitazone and vitamin E (G-PV) and then encapsulated by the surfaces of platelet-neutrophil hybrid membranes (PNM). Inherited from the natural source cells, the PNM show immune evading ability due to the surface marker comprising a number of "do not eat me" signals and has dual inflammatory enrichment capabilities due to specific surface adhesion molecules. By functionalizing the gelatin nanoparticle biomimetic surfaces, PNM-G can enhance the targeting to inflammatory sites and enrich liver tissue. The high expression of matrix metalloproteinase-9 (MMP-9) at the NASH site enables the gelatin nanoparticles to intelligently respond to degradation and then release vitamin E and pioglitazone for drug treatment. We performed an in vivo analysis of these nanoparticles to monitor changes in triacylglycerol metabolism in liver tissues and assessed the therapeutic efficacy of PNM-G-PV in a NASH rat model. The results showed that PNM-G-PV exhibited better therapeutic efficacy than therapies using G-PV or PV alone. This work explores a new biomedical use of PNM-G-PV and a promising NASH treatment protocol based on a new drug delivery system.


Subject(s)
Nanoparticles , Non-alcoholic Fatty Liver Disease , Animals , Gelatin , Liver/metabolism , Neutrophils/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Pioglitazone/therapeutic use , Rats , Vitamin E
2.
Theranostics ; 9(10): 2967-2983, 2019.
Article in English | MEDLINE | ID: mdl-31244936

ABSTRACT

The devastating prognosis of hepatocellular carcinoma (HCC) is partially attributed to chemotherapy resistance. Accumulating evidence suggests that the epithelial-mesenchymal transition (EMT) is a key driving force of carcinoma metastasis and chemoresistance in solid tumors. Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5), as an EMT inducer, is involved in the potentiation of Wnt signaling in HCC. This study proposes uncovering the roles of Lgr5 in Doxorubicin (Dox) resistance of HCC to improve treatment efficacy for HCC. Methods: We investigated the expression and significance of Lgr5 in HCC tissue and different cell lines. The effect of Lgr5 in EMT and Dox resistance was analyzed in HCC cells and implanted HCC tumor models. A two-hybrid analysis, using the Lgr5 gene as the bait and a HCC cDNA library, was used to screen targeted proteins that interact with Lgr5. The positive clones were identified by coimmunoprecipitation (Co-IP) and Glutathione-S-transferase (GST) pull-down. The impact of the interaction on Dox resistance was investigated by a series of assays in vitro and in vivo . Result: We found that Lgr5 was upregulated and positively correlated with poor prognosis in HCC. Additionally, it functioned as a tumor promoter to increase cell migration and induce EMT in HCC cells and increase the resistance to Dox. We identified programmed cell death protein 5 (PDCD5) as a target gene of Lgr5 and we found that PDCD5 was responsible for Lgr5-mediated Dox resistance. Further analysis with Co-IP and GST pull-down assays showed that the N-terminal extracellular domain of Lgr5 could directly bind to PDCD5. Lgr5 induced p53 degradation by blocking the nuclear translocation of PDCD5 and leading to the loss of p53 stabilization. Lgr5 showed a protection against the inhibition of Dox on the growth of tumor subcutaneously injected. Moreover, Lgr5 suppressed Dox-induced apoptosis via the p53 pathway and attenuated the cytotoxicity of Dox to HCC. Conclusion: Lgr5 induces the EMT and inhibits apoptosis, thus promoting chemoresistance by regulating the PDCD5/p53 signaling axis. Furthermore, Lgr5 may be a potential target gene for overcoming Dox resistance.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Apoptosis Regulatory Proteins/metabolism , Down-Regulation , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Neoplasm Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Antibiotics, Antineoplastic/administration & dosage , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Disease Models, Animal , Doxorubicin/administration & dosage , Epithelial-Mesenchymal Transition , Humans , Immunoprecipitation , Mice, Inbred BALB C , Models, Biological , Protein Interaction Mapping , Two-Hybrid System Techniques
3.
Cancer Res ; 78(14): 3849-3864, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29844127

ABSTRACT

Aberrant genome-wide hypomethylation and long noncoding RNA (lncRNA) dysregulation are associated with hepatocarcinogenesis. However, whether a relationship between the two exists remains largely unknown. S-adenosylmethionine (SAMe)-dependent methylation is a critical factor in genomic methylation. We previously found that SNHG6 lncRNA acted as an oncogene in hepatocarcinogenesis and could be considered a potential prognostic indicator for hepatocellular carcinoma (HCC). Here we verify that SNHG6 leads to genome-wide hypomethylation in hepatoma cells and that SNHG6 negatively correlates with the steady-state SAMe concentration in vivo and in vitro SNHG6 suppressed MAT1A protein expression by activating the miR-1297/FUS pathway to regulate nucleocytoplasmic shuttling of MAT1A mRNA. In addition, SNHG6 promoted expression of MAT2A by suppressing direct binding of miR-1297 to the MAT2A 3'UTR. SNHG6 regulated steady-state SAMe levels via coupling of two miR-1297-mediated SAMe-dependent positive feedback loops. Interestingly, the effect of SNHG6 on genome-wide methylation was inhibited by exogenous SAMe within a certain concentration range. These results suggest that single lncRNA dysregulation can lead to aberrant genome-wide hypomethylation by inhibiting SAMe production in HCC and that exogenous SAMe may be beneficial in the treatment of HCC.Significance: These findings explore the role of SNHG6 lncRNA in suppressing production of the universal methyl donor SAMe and its impact on global DNA methylation levels in liver cancer and highlight the potential benefit of SAMe for the treatment of liver cancer. Cancer Res; 78(14); 3849-64. ©2018 AACR.


Subject(s)
Carcinoma, Hepatocellular/genetics , DNA Methylation/genetics , Liver Neoplasms/genetics , Methionine Adenosyltransferase/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , S-Adenosylmethionine/metabolism , 3' Untranslated Regions/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...