Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(7)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230965

ABSTRACT

Real-time vehicle localization (i.e., position and orientation estimation in the world coordinate system) with high accuracy is the fundamental function of an intelligent vehicle (IV) system. In the process of commercialization of IVs, many car manufacturers attempt to avoid high-cost sensor systems (e.g., RTK GNSS and LiDAR) in favor of low-cost optical sensors such as cameras. The same cost-saving strategy also gives rise to an increasing number of vehicles equipped with High Definition (HD) maps. Rooted upon these existing technologies, this article presents the concept of Monocular Localization with Vector HD Map (MLVHM), a novel camera-based map-matching method that efficiently aligns semantic-level geometric features in-camera acquired frames against the vector HD map in order to achieve high-precision vehicle absolute localization with minimal cost. The semantic features are delicately chosen for the ease of map vector alignment as well as for the resiliency against occlusion and fluctuation in illumination. The effective data association method in MLVHM serves as the basis for the camera position estimation by minimizing feature re-projection errors, and the frame-to-frame motion fusion is further introduced for reliable localization results. Experiments have shown that MLVHM can achieve high-precision vehicle localization with an RMSE of 24 cm with no cumulative error. In addition, we use low-cost on-board sensors and light-weight HD maps to achieve or even exceed the accuracy of existing map-matching algorithms.

2.
Sensors (Basel) ; 19(9)2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31035458

ABSTRACT

Future intelligent transport systems depend on the accurate positioning of multiple targets in the road scene, including vehicles and all other moving or static elements. The existing self-positioning capability of individual vehicles remains insufficient. Also, bottlenecks in developing on-board perception systems stymie further improvements in the precision and integrity of positioning targets. Vehicle-to-everything (V2X) communication, which is fast becoming a standard component of intelligent and connected vehicles, renders new sources of information such as dynamically updated high-definition (HD) maps accessible. In this paper, we propose a unified theoretical framework for multiple-target positioning by fusing multi-source heterogeneous information from the on-board sensors and V2X technology of vehicles. Numerical and theoretical studies are conducted to evaluate the performance of the framework proposed. With a low-cost global navigation satellite system (GNSS) coupled with an initial navigation system (INS), on-board sensors, and a normally equipped HD map, the precision of multiple-target positioning attained can meet the requirements of high-level automated vehicles. Meanwhile, the integrity of target sensing is significantly improved by the sharing of sensor information and exploitation of map data. Furthermore, our framework is more adaptable to traffic scenarios when compared with state-of-the-art techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...