Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 333: 121977, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494230

ABSTRACT

Cyclodextrins (CDs) have been discovered to provide an efficient solution to the limited application of ester aroma molecules used in food, tobacco, and medication due to their strong smell and unstable storage. This work combined molecular modeling and experimental to analyze the conformation and controlled release of isomeric ester aroma compounds/ß-CD inclusion complexes (ICs). The investigation revealed that ester aroma compounds could be effectively encapsulated within the ß-CD cavity, forming ICs with low binding affinity. Furthermore, the key driving forces in ICs were identified as hydrogen bonds and van der Waals interactions through theoretical simulation. Results from the Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments confirmed the intermolecular interaction predicted by the molecular model. Notably, the release rate of aroma compounds from L-menthyl acetate/ß-CD (LMA/ß-CD) IC exceeded that of terpinyl acetate/ß-CD (TA/ß-CD) IC. This difference is attributed to the length of the chain of aroma molecules and the variation in the position of functional groups, influencing the stable formation of ICs with ß-CD. These findings hold potential implications for refining the application of ICs across diverse industries.

2.
Food Res Int ; 176: 113655, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163678

ABSTRACT

Due to the trace concentrations of gallic acid (GA), the interaction mechanism between GA and flavor compounds is limited, and the effects on the aroma compounds of Moutai Baijiu are even more unclear. In this study, the aroma compounds and phenolic compounds in Moutai Baijiu were investigated by stir bar sorptive extraction (SBSE), gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). A total of 63 volatiles and 10 phenolic compounds were identified, and 16 esters and 4 alcohols were identified as the important aroma substances (odor activity values ≥1). The effect of GA on the release of aroma compounds was investigated by sensory analysis and partition coefficient. The results showed that GA mainly inhibited the volatilization of alcohols, low concentrations of GA promoted the release of esters, and high concentrations slowed down or even inhibited the release effect affected by the hydrophobicity of aroma compounds. UV spectroscopy and thermodynamic analysis further revealed that the interaction of GA with 1-propanol was attributed mainly to hydrogen bonding and van der Waals forces, and the interaction with other compounds was mainly influenced by hydrophobic effects. These results show that gallic acid can effectively control the release of the aromas of Moutai Baijiu, highlight the important role of GA on the volatiles of baijiu, and provide theoretical support for further healthy improvement of the sensory quality of baijiu.


Subject(s)
Gallic Acid , Odorants , Odorants/analysis , Gas Chromatography-Mass Spectrometry/methods , Gallic Acid/analysis , Olfactometry/methods , Esters/analysis , Phenols/analysis
3.
Meat Sci ; 208: 109398, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029506

ABSTRACT

Reducing NaCl content in food while maintaining acceptability poses a significant challenge. Odor-induced saltiness enhancement (OISE) emerges as a promising solution. This study utilized gas chromatography-olfactory (GC-O) in conjunction with gas chromatography-mass spectrometry (GC-MS) to identify 37 key volatile compounds in three representative Chinese dry-cured hams. These compounds had an odor activity value (OAV) of ≥1 or a modification frequency (MF) of ≥30%. Subsequently, quantitative descriptive analysis (QDA) identified eight odorants associated with saltiness. These included 1-octen-3-ol, nonanal, heptanal, 2-methylbutanal, 3-methyl-butanal, benzaldehyde, octanal, and 2,6-dimethylpyrazine. Remarkably, these odorants significantly intensified saltiness (P < 0.05) when added to a low-concentration NaCl solution (0.3%), compared to zero or high concentrations (0.75% and 0.8%). As a result, traditional Chinese salty meat products offer a promising source of odorants for enhancing saltiness, compensating for reduced NaCl content through OISE.


Subject(s)
Agaricales , Pork Meat , Volatile Organic Compounds , Odorants/analysis , Gas Chromatography-Mass Spectrometry , Sodium Chloride , Pork Meat/analysis , Volatile Organic Compounds/analysis , Ethanol/analysis , Perception
4.
Int J Biol Macromol ; 247: 125732, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37423446

ABSTRACT

Creaming could be generated during storage of the starch-based Pickering emulsions. And cellulose nanocrystals in the solution are usually dispersed by relatively strong mechanical force, otherwise they may appear in the form of aggregates. In this work, we investigated the effects of cellulose nanocrystals on the stability of the starch-based Pickering emulsions. Results showed that the stability of Pickering emulsions was significantly improved by adding cellulose nanocrystals. Cellulose nanocrystals increased the viscosity, electrostatic repulsion and steric hindrance of the emulsions, which delayed the movement of droplets and obstructed the contact between droplets. This study provides new insights into the preparation and stabilisation of starch-based Pickering emulsions.


Subject(s)
Cellulose , Nanoparticles , Emulsions/chemistry , Cellulose/chemistry , Starch , Nanoparticles/chemistry , Water/chemistry , Particle Size
5.
J Food Sci ; 88(8): 3302-3322, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37421354

ABSTRACT

Yashi Xiang (YSX) is a flavor of Fenghuang Dancong tea and famous for its name and floral aroma, which is a type of semi-fermented oolong tea. However, previous research into the aroma characteristics of YSX tea mostly focused on the aroma compounds, and little research on chiral compounds in YSX has been performed. Therefore, the current study was conducted to explore the aroma characteristics of YSX tea from the perspective of enantiomers of chiral compounds. A total of 12 enantiomers were determined in this study, among them, (R)-(-)-α-ionone, (S)-(+)-linalool, (1S,2S)-(+)-methyl jasmonate, (S)-z-nerolidol, (R)-(+)-limonene, and (S)-(-)-limonene have important effects on the aroma components of YSX tea. The ER ratios of the enantiomers were different in samples of different grades. Therefore, this parameter can be used to identify the grade and authenticity of YSX tea. PRACTICAL APPLICATION: The study illuminates the aroma characteristics of YSX tea from the perspective of enantiomers of chiral compounds, which have important effects on the aroma components of YSX tea. It established an ER ratio system to effectively distinguish the grade and authenticity of YSX tea by comparing the ER of YSX tea. Focusing on analyzing the chiral compounds in the aroma of YSX tea is helpful in providing a theoretical basis for the authenticity of the precious tea and improving of the quality of YSX tea products.


Subject(s)
Odorants , Volatile Organic Compounds , Odorants/analysis , Tea , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Limonene
6.
Carbohydr Polym ; 318: 121118, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37479436

ABSTRACT

Starch is non-toxic, low cost, and possesses good biocompatibility and biodegradability. As a natural polymer material, starch is an ideal choice for microcapsule wall materials. Starch-based microcapsules have a wide range of applications and application prospects in fields such as food, pharmaceuticals, cosmetics, and others. This paper firstly reviews the commonly used wall materials and preparation methods of starch-based microcapsules. Then the effect of starch wall materials on microcapsule properties is introduced in detail. It is expected to provide researchers with design inspiration and ideas for the development of starch-based microcapsules. Next the applications of starch-based microcapsules in various fields are presented. Finally, the future trends of starch-based microcapsules are discussed. Molecular simulation, green chemistry, and solutions to the main problems faced by resistant starch microcapsules may be the future research trends of starch-based microcapsules.

7.
Int J Biol Macromol ; 247: 125722, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37419264

ABSTRACT

Magnetic chitosan hydrogels are organic-inorganic composite material with the characteristics of both magnetic materials and natural polysaccharides. Due to its biocompatibility, low toxicity and biodegradability, chitosan, a natural polymer has been widely used for preparing magnetic hydrogels. The addition of magnetic nanoparticles to chitosan hydrogels not only improves their mechanical strength, but also endows them with magnetic thermal effects, targeting capabilities, magnetically-sensitive release characteristics, easy separation and recovery, thus enabling them to be used in various applications including drug delivery, magnetic resonance imaging, magnetothermal therapy, and adsorption of heavy metals and dyes. In this review, the physical and chemical crosslinking methods of chitosan hydrogels and the methods for binding magnetic nanoparticles in hydrogel networks are first introduced. Subsequently, the properties of magnetic chitosan hydrogels were summarized including mechanical properties, self-healing, pH responsiveness and properties in magnetic fields. Finally, the potential for further technological and applicative advancements of magnetic chitosan hydrogels is discussed.


Subject(s)
Chitosan , Chitosan/chemistry , Hydrogels/chemistry , Drug Delivery Systems/methods , Polysaccharides , Physical Phenomena
8.
J Agric Food Chem ; 71(17): 6691-6698, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37083459

ABSTRACT

Odor activity value (OAV) and S-curve were used to study the content, proportion, and contribution of lactone chiral enantiomers in Longjing tea. A total of 10 enantiomers were identified in this study, among which (S)-(-)-δ-decalactone (45.4-84.4 µg/L), (S)-(-)-γ-decalactone (31.5-109 µg/L), (S)-(-)-γ-nonanolactone (23.4-72.8 µg/L), and (S)-(-)-γ-undecalactone (21.1-56.2 µg/L) presented the highest concentrations. Furthermore, (R)-(+)-γ-nonanolactone (OAV: 2-7), (S)-(-)-γ-nonanolactone (OAV: 1-5), (S)-(-)-δ-decalactone (OAV: 2-4), (R)-(+)-δ-decalactone (OAV: 1-3), and (R)-(+)-γ-undecalactone (OAV: 1-5) were determined as enantiomeric compounds that play an important role in the perceived aroma of Longjing tea. Compared with the aromatic reconstitution (AR), the threshold increased to different degrees after adding γ-nonanolactone, γ-decalactone, δ-decalactone, γ-undecalactone, and their chiral enantiomers. This finding indicated that these compounds exert significant effects on the overall aroma of the AR. The contribution of racemates and chiral enantiomers to the AR threshold and aroma is completely different. In view of the difference between racemic and enantiomers' aroma characteristics in Longjing tea, the analysis and identification of chiral enantiomers are necessary to enrich and improve the accurate analysis of the flavor profile of Longjing tea.


Subject(s)
Tea , Lactones/chemistry , Odorants , Tea/chemistry
9.
J Sci Food Agric ; 103(4): 1784-1799, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36260337

ABSTRACT

BACKGROUND: Laimao baijiu is a typical soy-sauce aroma-type baijiu in China. Amino acids are non-volatile compounds in baijiu and are beneficial to human health. Aroma is one of the important indicators that are used to evaluate the quality of baijiu. The interaction between aroma-active compounds and non-volatile compounds can also affect the release of aroma compounds. In this study, we identified the active-aroma compounds and amino acids in Laimao baijiu by stir bar sorptive extraction (SBSE), gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The interaction between amino acids and key esters was investigated by sensory analysis and partition coefficients. RESULTS: A total of 63 aroma compounds and 21 amino acids were identified. Twenty-one esters were identified from them as major aroma-active ester compounds with odor activity values ≥ 1. Finally, sensory analysis revealed that l-alanine had a significant effect on the strength of the aromas of esters, suggesting that low concentrations of amino acids were more likely to promote the release of esters and high concentrations were more likely to inhibit this. The partition coefficient can be a good explanation for this phenomenon. CONCLUSION: l-Alanine can significantly affect the aroma intensity of key ester aroma compounds in Laimao baijiu, and the effects of different concentrations of amino acids are different. This work shows that amino acids, as non-volatile compounds, have a regulatory effect on the release of aroma compounds in alcoholic beverages, which may provide new technical support for the aroma modulation of alcoholic beverages. © 2022 Society of Chemical Industry.


Subject(s)
Odorants , Volatile Organic Compounds , Humans , Odorants/analysis , Esters , Amino Acids , Chromatography, Liquid , Volatile Organic Compounds/chemistry , Tandem Mass Spectrometry , Alanine
10.
Carbohydr Polym ; 298: 120113, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36241287

ABSTRACT

Maltodextrin (MD) is a partially hydrolyzed product of starch that can be used to encapsulate food, medicine, essential oil and other substances. MD-based microcapsules can enhance the color, aroma, and taste of products, improve the solubility and stability of core materials, and slowly release the core materials for a long time to achieve certain specific uses. Therefore, the development of MD-based microcapsules is a key research field in food, pharmaceutics, cosmetics and other industries. In this paper, the progress of MD microcapsules and their applications in recent ten years is reviewed. First, the main characteristics of MD microcapsules are briefly introduced. Then, the preparation process, influencing factors, physical and chemical properties, stability, release mechanism and application in various fields of MD microcapsules are introduced in detail. This review is intended to provide reference on the properties of MD for researchers who desire to prepare microcapsules.


Subject(s)
Oils, Volatile , Polysaccharides , Capsules/chemistry , Polysaccharides/chemistry , Starch
11.
Colloids Surf B Biointerfaces ; 220: 112888, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36183634

ABSTRACT

Metal-phenolic networks (MPNs), which are formed by phenolic molecules and metal ions via coordination bonds, are emerging as highly templated functional metal-organic materials. These networks are mostly used in the form of particles for short-term in vivo drug delivery; however, there is a lack of research on durable and stable MPN hollow particles as delivery carriers for in vitro applications. In this study, hollow and yolk-like hybrid cubic MPNs were prepared by etching zeolitic imidazolate framework-8 (ZIF-8) with proanthocyanidins (PCs). Polydopamine (PDA) resulting from the oxidative self-polymerisation of dopamine was deposited on the surface of the fabricated MPN to obtain a PDA coating, which enhanced the mechanical properties of the MPN. The prepared ZnII-PC/PDA capsules consisted of two layers: a ZnII-PC layer and a PDA-PDA layer. It showed stability at 25 â„ƒ for at least 280 days after freeze-drying. Moreover, when loaded with carvacrol, this MPN exhibited an enhanced antibacterial performance. Therefore, this study lays the foundation for the use of MPNs as long-lasting functional carriers.


Subject(s)
Proanthocyanidins , Indoles/chemistry , Metals/chemistry , Excipients , Zinc
12.
J Control Release ; 351: 198-214, 2022 11.
Article in English | MEDLINE | ID: mdl-36122896

ABSTRACT

Fragrances and essential oils are promising for a wide range of applications due to their pleasant odors and diverse effects. However, direct addition to consumer products has the disadvantages of short retention time and easy deterioration of odor. At the same time, releasing a large amount of odor in a short time may be an unpleasant experience, which severely limits the practical application of aromatic substances. Microencapsulation perfectly solves these problems. Stimuli-responsive microcapsules, which combine environmental stimulation with microencapsulation, can not only effectively prevent the rapid decomposition and evaporation of aroma components, but also realize the "on-off" intelligent release of aroma substances to environmental changes, which have great promise in the field of fragrances. In this review, the application of stimuli-responsive microcapsules in fragrances is highlighted. Firstly, various encapsulation materials used to prepare stimuli-responsive aromatic microcapsules are described, mainly including some natural polymers, synthetic polymers, and inorganic materials. Subsequently, there is a detailed description of the common release mechanisms of stimuli-responsive aromatic microcapsules are described in detail. Finally, the application and future research directions are given for stimuli-responsive aromatic microcapsules in new textiles, food, paper, and leather.


Subject(s)
Perfume , Polymers , Capsules , Textiles
13.
J Food Sci ; 87(7): 3084-3094, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35712912

ABSTRACT

Dimethyl sulfide has been widely used in flavors and can also be used as a solvent and catalyst. However, dimethyl sulfide is volatile, and its lasting power is weak. Furthermore, dimethyl sulfide is insoluble in water and is unstable in some cases. This study concentrated on the encapsulation of dimethyl sulfide in ß-cyclodextrin to form an inclusion complex and to improve the durability, water solubility, and stability of dimethyl sulfide. The product was successfully produced and characterized by scanning electron microscopy, diffraction of X-rays, and thermal analysis. The dimethyl sulfide loading capacity is 6.40±0.08%. Based on the thermal release characteristics of dimethyl sulfide, the kinetic and thermodynamic parameters were obtained. The apparent activation energy, pre-exponential factor, and reaction order of the dimethyl sulfide release reaction were obtained and the values were 95.0 ± 0.1 kJ/mol, 1.03 × 1015 s-1 , and 1, respectively. The activation entropy change, activation enthalpy change, and activation Gibbs free energy change were 41.6 J/K, 95.0 kJ/mol, and 81.3 kJ/mol, respectively, during the process of dimethyl sulfide release at 56.7℃. To make it clear that the dimethyl sulfide molecule interacts with ß-cyclodextrin molecule, molecular simulation was used to investigate the formation process of the dimethyl sulfide-ß-cyclodextrin inclusion complex. The binding energy and the optimized structure were obtained. When the Z coordinate of the S atom in the dimethyl sulfide molecule is 1.1 × 10-10  m, the binding energy attained the minimum value, -51.3 kJ/mol. These basic data are helpful for understanding the dimethyl sulfide-ß-cyclodextrin inclusion complex formation mechanism and the interaction between dimethyl sulfide and ß-cyclodextrin. PRACTICAL APPLICATION: By forming an inclusion complex with ß-cyclodextrin, the stability, durability, and water solubility of dimethyl sulfide can be improved. Dimethyl sulfide-ß-cyclodextrin inclusion complex can be widely used in the food, beverage, flavor, and fragrance industries. The kinetic and thermodynamic parameters, binding energy, and the results of molecular simulation are helpful to understand the dimethyl sulfide-ß-cyclodextrin inclusion complex formation mechanism and the interaction between dimethyl sulfide and ß-cyclodextrin.


Subject(s)
beta-Cyclodextrins , Calorimetry, Differential Scanning , Solubility , Spectroscopy, Fourier Transform Infrared , Sulfides , Water/chemistry , beta-Cyclodextrins/chemistry
14.
J Agric Food Chem ; 70(27): 8395-8408, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35762564

ABSTRACT

Pu-Erh tea, as a typical post-fermented tea, can be divided into raw Pu-Erh tea (RAPT) and ripened Pu-Erh tea (RIPT) according to the processing technology. It is famous for its unique aroma after aging. Although previous research on the aroma characteristics of Pu-Erh tea mostly focused on the aroma compounds, little research on chiral compounds in RAPT and RIPT has been performed. Therefore, the current work aims to explore the aroma characteristics of Pu-Erh tea from the perspective of enantiomers of chiral compounds. A total of 15 enantiomers were determined in this study, among which (R)-(-)-2,2,6-trimethylcyclohexanone, (R)-(-)-linalool, (S)-(+)-linalool, (R)-(+)-δ-octanolactone, (R)-(+)-γ-nonanolactone, (2R,5R)-(+)-theaspirone A, and (R)-(-)-dihydroactinidiolide were identified as enantiomeric compounds that play an important role in the aroma of RAPT and RIPT. Furthermore, (2S,5R)-trans-linalool oxide and (R)-(+)-α-terpineol were important contributors to the aroma profile of RAPT, while (S)-(+)-2-methylbutanal, (S)-(-)-limonene, S-(-)-α-terpineol, and (1R,2R)-(-)-methyl jasmonate contributed to the characteristic aroma of RIPT. The addition of these enantiomeric compounds brings the aroma closer to that of the original tea sample. In addition, the analysis of chiral enantiomers of linalool, limonene, theaspirone A, and γ-nonanolactone can provide guidance for the quality and flavor control of Pu-Erh tea aroma.


Subject(s)
Odorants , Tea , Odorants/analysis , Plant Extracts/analysis , Stereoisomerism
15.
Soft Matter ; 18(18): 3447-3464, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35470362

ABSTRACT

The field of adhesion has revealed a significant impact on numerous applications such as wound healing, drug delivery, electrically conductive adhesive, dental adhesive, and wood industry. Nanotechnology has continued to be the primary means to achieve adhesion. Among them, biological systems based on the unique structure of the nano-levels have developed excellent adhesion capabilities after billions of years of evolution and natural selection. Therefore, the research on bionic adhesion inspired by biological systems has gradually emerged. This review firstly focuses on the mechanism of adhesion, and secondly reports the effects of different nanomaterials on adhesion properties. Then based on the structure of mussels, geckos, tree frogs, octopuses, and other organisms, the research progress of biomimetic nanotechnology to achieve adhesion is summarized. Finally, the applications, challenges, and future directions of nanotechnology in new adhesive materials are provided.


Subject(s)
Biomimetic Materials , Bivalvia , Nanostructures , Adhesives , Animals , Biomimetic Materials/chemistry , Biomimetics , Bivalvia/chemistry , Nanostructures/chemistry , Nanotechnology
16.
Molecules ; 27(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35268731

ABSTRACT

Jinjunmei (JJM), Keemun (KM), and Dianhong (DH) are the representative black teas in China, and they have always been favored by consumers. In this study, we aim to obtain the aroma characteristic information of volatile components in black tea samples through headspace solid-phase microextraction (HS-SPME), solvent-assisted flavor evaporation (SAFE), and gas chromatography-mass spectrometry combined with gas chromatography-olfactometry technology. The results showed that 70 compounds including α-methylbenzyl alcohol (isomer of ß-phenylethanol) were identified as odorants. Among them, 39 compounds such as linalool and geraniol showed a high degree of aroma contribution. Furthermore, the Feller's additive model was used to explore the perceptual interactions among the methyl salicylate and the floral compounds (10 groups): five groups of binary compounds showed masking effect after mixing, one group showed additive effect, and four groups showed synergistic effect. The ratio (R) was compared with the aroma index (n) of Steven's law, which found a high-fitness exponential relationship. The results of this study help to provide additional and new theoretical guidance for improving the aroma quality of black tea.


Subject(s)
Tea
17.
Molecules ; 27(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209052

ABSTRACT

In order to comprehensively evaluate the aroma-active substances and taste components of durian, solid-phase microextraction combined with gas chromatography mass spectrometry (SPME/GC-MS), high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and ultra-high-performance liquid chromatography (UHPLC) were used to test the key components of three popular durian cultivars. A total of 27 volatile compounds, 5 sugars, 27 organic acids and 19 free amino acids were detected in Black Thorn (BT) durian. A total of 38 volatile compounds, 4 sugars, 27 organic acids and 19 free amino acids were detected in Monthong (MT) durian. A total of 36 volatile compounds, 4 sugars, 27 organic acids and 20 free amino acids were detected in Musang King (MK) durian. Finally, the flavor differences of the three durians were evaluated using electronic nose (e-nose) and electronic tongue (e-tongue), and different cultivars were classified through principal component analysis (PCA).


Subject(s)
Bombacaceae/chemistry , Chromatography, High Pressure Liquid , Electronic Nose , Gas Chromatography-Mass Spectrometry , Phytochemicals/chemistry , Volatile Organic Compounds/chemistry , Amino Acids/chemistry , Humans , Phytochemicals/analysis , Taste , Volatile Organic Compounds/analysis
18.
J Agric Food Chem ; 69(50): 15301-15313, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34898197

ABSTRACT

"Hongmeiren" bananas are popular because of their red peel. Two extraction methods solvent-assisted flavor evaporation and headspace solid-phase microextraction, combined with gas chromatography-olfactometry and gas chromatography-mass spectrometry (GC-MS), were used to analyze the volatile components of "Hongmeiren" bananas. A total of 86 aroma compounds were identified by GC-MS, 62 of which were identified as the major aroma-active compounds with an odor activity value ≥ 1 or modified frequency ≥ 30%. Ethyl (E)-2-butenoate, 4-undecanone, and α-phellandrene were found in bananas for the first time. Sensory experiments showed that eight sweet-associated odorants could significantly achieve the sweetness enhancement effect at 30 g/L sucrose solution by odor-induced changes in taste perception. These experiments suggest that selected odorants can achieve sugar reduction, but with consideration of the sugar concentration. The study of the sweetness enhancement effect of individual compounds provides a more direct theoretical support for sugar reduction in the food industry.


Subject(s)
Musa , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Olfactometry , Perception , Volatile Organic Compounds/analysis
19.
Molecules ; 26(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34684797

ABSTRACT

Rosa roxburghii tratt (RRT), widely distributed in the southwest of China, is favored by consumers for its good taste and healthy functions. In this study, thirty-seven compounds of Rosa roxburghii Tratt (RRT) were identified and quantified by gas chromatography-olfactometry (G-O) and gas chromatography-mass spectrometry (GC-MS) analysis. Furthermore, ethyl 2-methylpropanoate, ethyl butanoate, ethyl 2-methylbutyrate, and ethyl hexanoate were present with much higher odor activity values (OAVs) than other compounds. The key notes were confirmed by omission tests. Possible interaction among key notes was investigated through odor intensity determination and sensory analysis. It showed fruity and woody notes had synergistic effects. Full factorial design was used to evaluate the notes contribution to the whole odor. One important finding is the major effect of order interactions, fruity note (X1) and woody note (X4) especially, emphasizing the existence of complex interactions occurring between odor notes. The interaction X1X4 was further investigated. The woody note has a positive effect when the fruity note is also in the mixture but tends to show a negative effect otherwise.


Subject(s)
Odorants/analysis , Rosa/chemistry , Volatile Organic Compounds/chemistry , China , Drugs, Chinese Herbal/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Olfactometry , Solid Phase Microextraction
20.
Food Res Int ; 147: 110457, 2021 09.
Article in English | MEDLINE | ID: mdl-34399457

ABSTRACT

Aroma profiles and aroma-active compounds of "Yulu" peach from Fenghua (the peach known for the best flavor and quality in China) were investigated by headspace solid-phase microextraction (HS-SPME), solvent-assisted flavor evaporation (SAFE), gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and flame photometric detection (FPD). The combination of these methods improved the analysis and identification of aroma substances compared to the combination of a single aroma extraction method and GC-MS. A total of 85 aroma-active compounds, including 10 sulfur compounds were detected. Methional, methyl 3-(methylthio)propionate, methionol, and benzothiazole were first detected in peaches. These aroma compounds cannot only supplement the database of aroma substances of peaches, but also provide data support for traceability of the origins of "Yulu" peaches. In addition, the odor activity value (OAV) was used to identify the contributions of the most important compounds. The results indicated that hexanal, 3-methylbutanal, (E)-2-hexen-1-ol, 3-mercaptohexyl acetate, (E,E)-2,4-decadienal, 2-methylpropanal, γ-decalactone, 2-methylbutanal, theaspirane, and δ-decalactone were the key aroma-active compounds. The key characteristic aroma components were further ascertained by aroma reconstitution and omission experiments, which showed that the fruity, floral, sulfur, and sour notes could be well simulated. Finally, the perceptual interactions between different sulfur compounds and fruity recombination (FR) were explored. 3-mercaptohexanol and 4-methyl-4-mercaptopentan-2-one could significantly decrease the threshold of FR. The possible reason was that these two sulfur compounds had synergistic effects with the aroma compounds in FR, with the U model confirming the results of these synergistic effects. The perceptual interactions provide a basis for the regulation of characteristic fruity aroma of peach products.


Subject(s)
Prunus persica , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry , Norisoprenoids , Odorants/analysis , Olfactometry , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...