Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 328
Filter
1.
Eur J Pharmacol ; 979: 176806, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986830

ABSTRACT

Chronic kidney disease (CKD) is a clinical syndrome characterized by persistent renal function decline. Renal fibrosis is the main pathological process in CKD, but an effective treatment does not exist. Stratifin (SFN) is a highly-conserved, multi-function soluble acidic protein. Therefore, this study explored the effects of SFN on renal fibrosis. First, we found that SFN was highly expressed in patients with CKD, as well as in renal fibrosis animal and cell models. Next, transforming growth factor-beta 1 (TGF-ß1) induced injury and fibrosis in human renal tubule epithelial cells, and SFN knockdown reversed these effects. Furthermore, SFN knockdown mitigated unilateral ureteral obstruction (UUO)-induced renal tubular dilatation and renal interstitial fibrosis in mice. Liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS), co-immunoprecipitation (Co-IP), and immunofluorescence co-localization assays demonstrated that SFN bound the non-muscle myosin-encoding gene, myosin heavy chain 9 (MYH9), in the cytoplasm of renal tubular epithelial cells. MYH9 knockdown also reduced Col-1 and α-SMA expression, which are fibrosis markers. Finally, silencing SFN decreased MYH9 expression, alleviating renal fibrosis. These results suggest that SFN promotes renal fibrosis in CKD by interacting with MYH9. This study may provide potential strategies for the treatment of CKD.

2.
Front Neurorobot ; 18: 1374531, 2024.
Article in English | MEDLINE | ID: mdl-38911604

ABSTRACT

The quaternion cubature Kalman filter (QCKF) algorithm has emerged as a prominent nonlinear filter algorithm and has found extensive applications in the field of GNSS/SINS integrated attitude determination and positioning system (GNSS/SINS-IADPS) data processing for unmanned aerial vehicles (UAV). However, on one hand, the QCKF algorithm is predicated on the assumption that the random model of filter algorithm, which follows a white Gaussian noise distribution. The noise in actual GNSS/SINS-IADPS is not the white Gaussian noise but rather a ubiquitous non-Gaussian noise. On the other hand, the use of quaternions as state variables is bound by normalization constraints. When applied directly in nonlinear non-Gaussian system without considering normalization constraints, the QCKF algorithm may result in a mismatch phenomenon in the filtering random model, potentially resulting in a decline in estimation accuracy. To address this issue, we propose a novel Gaussian sum quaternion constrained cubature Kalman filter (GSQCCKF) algorithm. This algorithm refines the random model of the QCKF by approximating non-Gaussian noise with a Gaussian mixture model. Meanwhile, to account for quaternion normalization in attitude determination, a two-step projection method is employed to constrain the quaternion, which consequently enhances the filtering estimation accuracy. Simulation and experimental analyses demonstrate that the proposed GSQCCKF algorithm significantly improves accuracy and adaptability in GNSS/SINS-IADPS data processing under non-Gaussian noise conditions for Unmanned Aerial Vehicles (UAVs).

3.
Front Immunol ; 15: 1404108, 2024.
Article in English | MEDLINE | ID: mdl-38873601

ABSTRACT

Background: Forest musk deer (FMD, Moschus Berezovskii) is a critically endangered species world-widely, the death of which can be caused by pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been involved in the regulation of immune genes and disease development. However, the regulatory profiles of mRNAs and miRNAs involved in immune regulation of FMD are unclear. Methods: In this study, mRNA-seq and miRNA-seq in blood were performed to constructed coexpression regulatory networks between PF and healthy groups of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Further, protein-protein interaction (PPI) network of immune-associated and apoptosis-associated key signaling pathways were constructed based on mRNA-miRNA in the PF blood of the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for experimental verification using RT-qPCR. Results: A total of 2744 differentially expressed genes (DEGs) and 356 differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood group compared to the healthy blood group. Among them, 42 DEmiRNAs were negatively correlated with 20 immune DEGs from a total of 57 correlations. The DEGs were significantly associated with pathways related to CD molecules, immune disease, immune system, cytokine receptors, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, and NOD-like receptor signaling pathway. There were 240 immune-related DEGs, in which 186 immune-related DEGs were up-regulated and 54 immune-related DEGs were down-regulated. In the protein-protein interaction (PPI) analysis of immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2, PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R were identified as the hub immune genes. The mRNA-miRNA coregulation analysis showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and miR-1842-5p are key miRNAs that target DEGs involved in immune disease, immune system and immunoregulation. Conclusion: The development and occurrence of PF were significantly influenced by the immune-related and apoptosis-related genes present in PF blood. mRNAs and miRNAs associated with the development and occurrence of PF in the FMD.


Subject(s)
Deer , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs , Pulmonary Fibrosis , RNA, Messenger , Transcriptome , Animals , MicroRNAs/genetics , Deer/genetics , Deer/immunology , RNA, Messenger/genetics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/immunology , Protein Interaction Maps , Gene Expression Regulation , Computational Biology/methods
4.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2364-2375, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812137

ABSTRACT

To explore the active substances exerting anti-tumour effect in lemon essential oil and the molecular mechanism inhibiting the proliferation of head and neck cancer cells SCC15 and CAL33, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay(MTT) was utilized to identify the active component inhibiting the proliferation of head and neck cancer cells, namely citral. The IC_(50) of citral inhibiting the proliferation of head and neck cancer cells and normal cells were also determined. In addition, a 5-ethynyl-2'-deoxyuridine(EdU) staining assay was used to detect the effect of citral on the proliferation rate of head and neck cancer cells, and a colony formation assay was used to detect the effect of citral on tumor sphere formation of head and neck cancer cells in vitro. The cell cycle arrest and apoptosis induction of head and neck cancer cells by citral were evaluated by flow cytometry, and Western blot was used to detect the effect of citral on the expression levels of cell cycle-and apoptosis-related proteins in head and neck cancer cells. The findings indicated that citral could effectively inhibit the proliferation and growth of head and neck cancer cells, with anti-tumor activity, and its half inhibitory concentrations for CAL33 and SCC15 were 54.78 and 25.23 µg·mL~(-1), respectively. Furthermore, citral arrested cell cycle at G_2/M phase by down-regulating cell cycle-related proteins such as S-phase kinase associated protein 2(SKP2), C-MYC, cyclin dependent kinase 1(CDK1), and cyclin B. Moreover, citral increased the cysteinyl aspartate-specific proteinase-3(caspase-3), cysteinyl aspartate-specific proteinase-9(caspase-9), and cleaved poly ADP-ribose polymerase(PARP). It up-regulated the level of autophagy-related proteins including microtubule associated protein 1 light chain 3B(LC3B), sequestosome 1(P62/SQSTM1), autophagy effector protein Beclin1(Beclin1), and lysosome-associate membrane protein 1(LAMP1), suggesting that citral could effectively trigger cell apoptosis and cell autophagy in head and neck cancer cells. Furthermore, the dual-tagged plasmid system mCherry-GFP-LC3 was used, and it was found that citral impeded the fusion of autophagosomes and lysosomes, leading to autophagic flux blockage. Collectively, our findings reveal that the main active anti-proliferation component of lemon essential oil is citral, and this component has a significant inhibitory effect on head and neck cancer cells. Its underlying molecular mechanism is that citral induces apoptosis and autophagy by cell cycle arrest and ultimately inhibits cell proliferation.


Subject(s)
Acyclic Monoterpenes , Apoptosis , Cell Proliferation , Head and Neck Neoplasms , Monoterpenes , Oils, Volatile , Humans , Cell Proliferation/drug effects , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/genetics , Apoptosis/drug effects , Cell Line, Tumor , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemistry , Cell Cycle Checkpoints/drug effects , Citrus/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
5.
Medicine (Baltimore) ; 103(14): e37633, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579084

ABSTRACT

BACKGROUND: The quality control circle (QCC) model has achieved good results in clinical applications in many hospitals in China and has gained popularity. This study aims to explore the application of QCC activities on early ambulation after cesarean section. METHODS: A QCC management group was established following standardized methods and techniques. The theme of the group was identified as "to enhance the implementation rate of the patient early ambulation after the cesarean section" through a matrix graph. The early ambulation rates after surgery of patients who received cesarean section were compared before and after QCC managements. RESULTS: Our data suggested that the early ambulation rates after cesarean section increased from 37.5% to 81.25% after applying QCC management. The biggest factor influencing the ambulation activities 24 ±â€…4 hours after the surgery was patients and family members do not cooperate. In addition, outstanding improvements in terms of nurses' sense of responsibility and self-confidence, communication and teamwork capacity in the problem-solving process were observed after the establishment of QCC. CONCLUSION: The application of QCC management had not only increase the early ambulation rates after cesarean section but also improved the quality of nursery care in general.


Subject(s)
Cesarean Section , Early Ambulation , Humans , Pregnancy , Female , Hospitals , Quality Control , China
6.
Int J Biol Macromol ; 262(Pt 2): 129994, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325690

ABSTRACT

Coix seed polysaccharides had received increasing attention due to their diverse biological activities. In this study, a homogeneous polysaccharide (CSPW) was extracted and purified from coix seed. Furthermore, the saliva-gastrointestinal digestion and fecal fermentation behavior of CSPW were simulated in vitro. The results showed that CSPW was mainly composed of glucose. It cannot be degraded by the simulated salivary and intestinal digestive system, but can be degraded by the simulated gastric digestive system. After fermentation for 24 h, CSPW promoted the production of short-chain fatty acids (SCFAs), with acetic acid, propionic acid and n-butyric acid being the main metabolites. In addition, CSPW could significantly regulate the composition and microbial diversity of gut microbiota by increasing the relative abundance of beneficial bacteria, such as Limosilicactobacillus, Bifidobacterium and Collinsella. Finally, further analysis of functional prediction revealed that amino acid metabolism, nucleotide metabolism and carbohydrate metabolism were the most important pathways for CSPW to promote health. In summary, our findings suggested that CSPW could potentially be used as a good source of prebiotics because it can be used by gut microbiota to produce SCFAs and regulate the gut microbiota.


Subject(s)
Coix , Gastrointestinal Microbiome , Digestion , Fatty Acids, Volatile/metabolism , Feces/microbiology , Fermentation , Gastrointestinal Microbiome/physiology , Health Promotion , Polysaccharides/chemistry , Seeds/metabolism , Humans
7.
Cell Death Discov ; 10(1): 34, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233385

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated, voltage-dependent channels of the ionotropic glutamate receptor family. The present study explored whether NMDAR activation induced ferroptosis in vascular endothelial cells and its complicated mechanisms in vivo and in vitro. Various detection approaches were used to determine the ferroptosis-related cellular iron content, lipid reactive oxygen species (LOS), siRNA molecules, RNA-sequence, MDA, GSH, and western blotting. The AMPK activator Acadesine (AICAR), HMGB1 inhibitor glycyrrhizin (GLY), PP2A inhibitor LB-100, and NMDAR inhibitor MK801 were used to investigate the involved in vivo and in vitro pathways. The activation of NMDAR with L-glutamic acid (GLU) or NMDA significantly promoted cellular ferroptosis, iron content, MDA, and the PTGS2 expression, while decreasing GPX4 expression and GSH concentration in human umbilical vein endothelial cells (HUVECs), which was reversed by ferroptosis inhibitors Ferrostatin-1(Fer-1), Liproxstatin-1 (Lip-1), or Deferoxamine (DFO). RNA-seq revealed that ferroptosis and SLC7A11 participate in NMDA or GLU-mediated NMDAR activation. The PP2A-AMPK-HMGB1 pathway was majorly associated with NMDAR activation-induced ferroptosis, validated using the PP2A inhibitor LB-100, AMPK activator AICAR, or HMGB1 siRNA. The role of NMDAR in ferroptosis was validated in HUVECs induced with the ferroptosis activator errasin or RSL3 and counteracted by the NMDAR inhibitor MK-801. The in vivo results showed that NMDA- or GLU-induced ferroptosis and LOS production was reversed by MK-801, LB-100, AICAR, MK-801, and GLY, confirming that the PP2A-AMPK-HMGB1 pathway is involved in NMDAR activation-induced vascular endothelium ferroptosis. In conclusion, the present study demonstrated a novel role of NMDAR in endothelial cell injury by regulating ferroptosis via the PP2A-AMPK-HMGB1 pathway.

8.
Chemistry ; 30(18): e202303973, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38179822

ABSTRACT

As a multifunctional material, metal clusters have recently received some attention for their application in solar cells.This review delves into the multifaceted role of metal clusters in advancing solar cell technologies, covering diverse aspects from electron transport and interface modification to serving as molecular precursors for inorganic materials and acting as photosensitizers in metal-cluster sensitized solar cells (MCSSCs). The studies conducted by various researchers illustrate the crucial impact of metal clusters, such as gold nanoclusters (Au NCs), on enhancing solar cell efficiency through size-dependent effects, distinct interface behaviors, and tailored interface engineering. From optimizing charge transfer rates to improving light absorption and reducing carrier recombination, metal clusters prove instrumental in shaping the landscape of solar energy conversion.The promising performance of metal-cluster sensitized solar cells, coupled with their scalability and flexibility, positions them as a exciting avenue for future clean energy applications. The article concludes by emphasizing the need for continued interdisciplinary research and technological innovation to unlock the full potential of metal clusters in contributing to sustainable and high-performance solar cells.

9.
Asian J Surg ; 47(4): 1756-1762, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38228457

ABSTRACT

BACKGROUND: As an innovative treatment, stapled transperineal rectovaginal fistula repair (STR) for rectovaginal fistula (RVF) has demonstrated effectiveness in preliminary reports. This study aims to compare STR with rectal mucosal advancement flap repair (RAF), a widely utilized surgical procedure, for the surgical outcome of the low- and mid-level RVF. METHODS: In this retrospective cohort study, patients with low- and mid-level RVF who underwent STR or RAF were included from both the Sixth Affiliated Hospital of Sun Yat-sen University and Xi'an Daxing Hospital. Among the 99 total patients, 77 underwent STR and 22 underwent RAF. Patient demographics, operative data, and outcomes were collected and analyzed. Recurrence rate and associated risk factors were evaluated. RESULTS: There were no statistically significant differences among patients in terms of clinical characteristics like age, BMI, aetiology, and fistula features. During the follow-up period of 20 months (interquartile range 3.0-41.8 months), a total of 28 patients relapsed, with a significantly lower recurrence rate in the STR group (20.8 %) than in the RAF group (54.6 %) (P = 0.005). In the multivariate Cox analysis, STR was an independent protective factor against recurrence (HR: 0.37, 95%CI: 0.17-0.79, P = 0.01). Logistic regression indicated that there was no statistically significant difference between these two procedures in terms of surgical complications (OR: 0.53, 95%CI: 0.19-1.48, P = 0.23). CONCLUSION: For low- and mid-level RVF, STR may be an alternative option for treatment modality that offers a lower recurrence rate, without observed disadvantage in terms of surgical complication rates.


Subject(s)
Rectovaginal Fistula , Rectum , Female , Humans , Rectovaginal Fistula/etiology , Rectovaginal Fistula/surgery , Retrospective Studies , Rectum/surgery , Surgical Flaps , Risk Factors , Treatment Outcome
10.
BMC Plant Biol ; 23(1): 645, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38097946

ABSTRACT

BACKGROUND: The genus Triplostegia contains two recognized species, T. glandulifera and T. grandiflora, but its phylogenetic position and species delimitation remain controversial. In this study, we assembled plastid genomes and nuclear ribosomal DNA (nrDNA) cistrons sampled from 22 wild Triplostegia individuals, each from a separate population, and examined these with 11 recently published Triplostegia plastomes. Morphological traits were measured from herbarium specimens and wild material, and ecological niche models were constructed. RESULTS: Triplostegia is a monophyletic genus within the subfamily Dipsacoideae comprising three monophyletic species, T. glandulifera, T. grandiflora, and an unrecognized species Triplostegia sp. A, which occupies much higher altitude than the other two. The new species had previously been misidentified as T. glandulifera, but differs in taproot, leaf, and other characters. Triplotegia is an old genus, with stem age 39.96 Ma, and within it T. glandulifera diverged 7.94 Ma. Triplostegia grandiflora and sp. A diverged 1.05 Ma, perhaps in response to Quaternary climate fluctuations. Niche overlap between Triplostegia species was positively correlated with their phylogenetic relatedness. CONCLUSIONS: Our results provide new insights into the species delimitation of Triplostegia, and indicate that a taxonomic revision of Triplostegia is needed. We also identified that either rpoB-trnC or ycf1 could serve as a DNA barcode for Triplostegia.


Subject(s)
Caprifoliaceae , Genome, Plastid , Humans , Adult , Phylogeny , Caprifoliaceae/genetics , Genome, Plastid/genetics , Phenotype , DNA, Ribosomal
11.
Angew Chem Int Ed Engl ; 62(51): e202313833, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37942505

ABSTRACT

Directional defects management in polycrystalline perovskite film with inorganic passivator is highly demanded while yet realized for fabricating efficient and stable perovskite solar cells (PSCs). Here, we develop a directional passivation strategy employing a two-dimensional (2D) material, Cu-(4-mercaptophenol) (Cu-HBT), as a passivator precursor. Cu-HBT combines the merits of the targeted modification from organic passivator and excellent stability offered by inorganic passivator. Featuring with dense organic functional motifs on its surfaces, Cu-HBT has the capability to "find" and fasten to the Pb defect sites in perovskites through coordination interactions during a spin-coating process. During subsequent annealing treatment, the organic functional motifs cleave from Cu-HBT and convert in situ into p-type semiconductors, Cu2 S and PbS. The resultant Cu2 S and PbS not only serve as stable inorganic passivators on the perovskite surface, significantly enhancing cell stability, but also facilitate efficient charge extraction and transport, resulting in an impressive efficiency of up to 23.5 %. This work contributes a new defect management strategy by directionally yielding the stable inorganic passivators for highly efficient and stable PSCs.

12.
BMC Gastroenterol ; 23(1): 372, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907854

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) has excellent accuracy in diagnosing preoperative lesions before anal fistula surgery. However, MRI is not good in identifying early recurrent lesions and effective methods for quantitative assessment of fistula healing are still warranted. This retrospective study aimed to develop and validate a specific MRI-based nomogram model to predict fistula healing during the early postoperative period. METHODS: Patients with complex cryptoglandular anal fistulas who underwent surgery between January 2017 and October 2020 were included in this study. MRI features and clinical parameters were analyzed using univariate and multivariate logistic regression analysis. A nomogram for predicting fistula healing was constructed and validated. RESULTS: In total, 200 patients were included, of whom 186 (93%) were male, with a median age of 36 (18-65) years. Of the fistulas, 58.5% were classified as transsphincteric and 19.5% as suprasphincteric. The data were randomly divided into the training cohort and testing cohort at a ratio of 7:3. Logistic analysis revealed that CNR, ADC, alcohol intake history, and suprasphincteric fistula were significantly correlated with fistula healing. These four predictors were used to construct a predictive nomogram model in the training cohort. AUC was 0.880 and 0.847 for the training and testing cohorts, respectively. Moreover, the decision and calibration curves showed high coherence between the predicted and actual probabilities of fistula healing. CONCLUSIONS: We developed a predictive model and constructed a nomogram to predict fistula healing during the early postoperative period. This model showed good performance and may be clinically utilized for the management of anal fistulas.


Subject(s)
Anal Canal , Rectal Fistula , Humans , Male , Adult , Middle Aged , Aged , Female , Retrospective Studies , Wound Healing , Rectal Fistula/diagnostic imaging , Rectal Fistula/surgery , Magnetic Resonance Imaging , Treatment Outcome
13.
Mitochondrial DNA B Resour ; 8(10): 1109-1113, 2023.
Article in English | MEDLINE | ID: mdl-37859798

ABSTRACT

Auricularia delicata (Mont.) Henn. 1893 is an edible and medicinal jelly mushroom popular in China. Here, we report the assembly and annotation of a complete A. delicata mitochondrial genome based on data sequenced using an Illumina NovaSeq 6000 platform. The length of the complete circular A. delicata mitochondrial genome is 189,696 bp, with a GC content of 34.1%. The A. delicata mitochondrial genome contains 60 genes, including 32 protein-coding genes, 26 tRNA genes, and two rRNA genes. Phylogenetic analysis indicated that A. delicata clustered with the Auricularia group, alongside A. auricula-judae and A. heimuer. Additionally, A. delicata was found to be genetically distant from other species of Polyporales, Russulales, and Agaricales. This genome will provide an invaluable reference for the continued study and utilization of A. delicata and other Auricularia species.

14.
World J Gastrointest Endosc ; 15(9): 564-573, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37744321

ABSTRACT

BACKGROUND: We invented Endoscopic Ruler, a new endoscopic device to measure the size of varices in patients with cirrhosis and portal hypertension. AIM: To assess the feasibility and safety of Endoscopic Ruler, and evaluate the agreement on identifying large oesophageal varices (OV) between Endoscopic Ruler and the endoscopists, as well as the interobserver agreement on diagnosing large OV using Endoscopic Ruler. METHODS: We prospectively and consecutively enrolled patients with cirrhosis from 11 hospitals, all of whom got esophagogastroduodenoscopy (EGD) with Endoscopic Ruler. The primary study outcome was a successful measurement of the size of varices using Endoscopic Ruler. The secondary outcomes included adverse events, operation time, the agreement of identifying large OV between the objective measurement of Endoscopic Ruler and the empirical reading of endoscopists, together with the interobserver agreement on diagnosing large OV by Endoscopic Ruler. RESULTS: From November 2020 to April 2022, a total of 120 eligible patients with cirrhosis were recruited and all of them underwent EGD examinations with Endoscopic Ruler successfully without any adverse event. The median operation time of Endoscopic Ruler was 3.00 min [interquartile range (IQR): 3.00 min]. The kappa value between Endoscopic Ruler and the endoscopists while detecting large OV was 0.52, demonstrating a moderate agreement. The kappa value for diagnosing large OV using Endoscopic Ruler among the six independent observers was 0.77, demonstrating a substantial agreement. CONCLUSION: The data demonstrates that Endoscopic Ruler is feasible and safe for measuring the size of varices in patients with cirrhosis and portal hypertension. Endoscopic Ruler is potential to promote the clinical practice of the two-grade classification system of OV.

15.
ACS Appl Mater Interfaces ; 15(33): 39351-39362, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37552834

ABSTRACT

Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C-S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (>600 mAh g-1), a high ICE (>90%), superior cycling stability (490 mAh g-1 after 1100 cycles at 5 A g-1), and outstanding rate performance (420 mAh g-1 at a high current density of 50 A g-1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.

16.
Nat Prod Res ; : 1-9, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37395502

ABSTRACT

Three 12, 8-guaianolide sesquiterpene lactones, including a new compound intybusin F (1), and a new natural product cichoriolide I (2), along with six known 12, 6-guaianolide compounds (4-9) were isolated from the roots of Cichorium intybus L. Their structures were determined by extensive spectroscopic analysis. The absolute configurations of new compounds were elucidated based on analysis of the experimental and calculated electronic circular dichroism spectra. Compounds 1, 2, 4, 7, 8 showed significant effects on facilitating the glucose uptake in oleic acid plus high glucose-stimulated HepG2 cells at 50 µM. In addition, compounds 1, 2, 3, 6, 7 exhibited obvious inhibitory effects against NO production, of them, compounds 1, 2, 7 can significantly decrease the secretion of inflammatory cytokines (TNF-α, IL-6 and COX-2) levels in this hyperglycemic HepG2 cell model.

17.
Int J Biol Macromol ; 248: 125811, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37467831

ABSTRACT

Circular RNA (circRNA) has been implicated in liver fibrosis and modulated by multiple elusive molecular mechanisms, while the effects of N6-methyladenosine (m6A) modification on circRNA are still elusive. Herein, we identify circIRF2 from our circRNA sequencing data, which decreased in liver fibrogenesis stage and restored in resolution stage, indicating that dysregulated circIRF2 may be closely associated with liver fibrosis. Gain/loss-of-function analysis was performed to evaluate the effects of circIRF2 on liver fibrosis at both the fibrogenesis and resolution in vivo. Ectopic expression of circIRF2 attenuated liver fibrogenesis and HSCs activation at the fibrogenesis stage, whereas downregulation of circIRF2 impaired mouse liver injury repair and inflammation resolution. Mechanistically, YTHDF2 recognized m6A-modified circIRF2 and diminished circIRF2 stability, partly accounting for the decreased circIRF2 in liver fibrosis. Microarray was applied to investigate miRNAs regulated by circIRF2, our data elucidate cytoplasmic circIRF2 may directly harbor miR-29b-1-5p and competitively relieve its inhibitory effect on FOXO3, inducing FOXO3 nuclear translocation and accumulation. Clinically, circIRF2 downregulation was prevalent in liver fibrosis patients compared with healthy individuals. In summary, our findings offer a novel insight into m6A modification-mediated regulation of circRNA and suggest that circIRF2 may be an exploitable prognostic marker and/or therapeutic target for liver fibrosis.


Subject(s)
MicroRNAs , RNA, Circular , Mice , Animals , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Forkhead Box Protein O3/genetics , RNA-Binding Proteins/metabolism
19.
Angew Chem Int Ed Engl ; 62(39): e202307152, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37490622

ABSTRACT

Modulating the surface charge transport behavior of hole transport materials (HTMs) would be as an potential approach to improve their hole mobility, while yet realized for fabricating efficient photovoltaic devices. Here, an oxygen bridged dimer-based monoamine FeIII porphyrin supramolecule is prepared and doped in HTM film. Theoretical analyses reveal that the polaron distributed on dimer can be coupled with the parallel arranged polarons on adjacent dimers. This polaron coupling at the interface of supramolecule and HTM can resonates with hole flux to increase hole transport efficiency. Mobility tests reveal that the hole mobility of doped HTM film is improved by 8-fold. Doped perovskite device exhibits an increased efficiency from 19.8 % to 23.2 %, and greatly improved stability. This work provides a new strategy to improve the mobility of HTMs by surface carrier modulation, therefore fabricating efficient photovoltaic devices.

20.
Huan Jing Ke Xue ; 44(6): 3439-3449, 2023 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-37309961

ABSTRACT

Aiming to address the problem of soil environmental pollution caused by the large-scale use of plastic film in agricultural production in China, field experiments were carried out by applying degradable plastic film. Pumpkin was used as the research material to explore the effects of black common plastic film (CK), white degradation plastic film (WDF), black degradation plastic film (BDF), and black CO2-based degradable plastic film (C-DF) on soil physicochemical properties, root growth and yield, and soil quality. The results showed that the soil water content and temperature of the three degradable plastic films were lower than those of ordinary plastic films to different degrees; there was no significant difference in soil organic matter content among the treatments. The soil available potassium content of the C-DF treatment was lower than that of CK, and WDF and BDF had no significant effect. Compared with those in CK and WDF, soil total nitrogen and available nitrogen contents in the BDF and C-DF treatments were lower, and the difference between treatments reached a significant level. Compared with that of CK, the catalase activities of the three types of degradation membranes were significantly increased by 2.9%-6.8%, and the sucrase was significantly decreased by 33.3%-38.4%. Compared with that in CK, the soil cellulase activity in the BDF treatment was significantly increased by 63.8%, whereas WDF and C-DF had no significant effects. The three types of degradable film treatments could promote the growth of underground roots, and the growth vigor was obviously enhanced. The yield of pumpkin treated with BDF and C-DF was close to that of CK, and the yield of pumpkin treated with BDF was significantly lower than that of CK by 11.4%. The experimental results showed that the effects of the BDF and C-DF treatments on soil quality and yield were comparable to those of CK. According to the results, two types of black degradable plastic film can effectively replace ordinary plastic film in the high-temperature production season.


Subject(s)
Agriculture , Soil , China , Nitrogen , Plastics
SELECTION OF CITATIONS
SEARCH DETAIL
...