Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.630
Filter
1.
Shanghai Kou Qiang Yi Xue ; 33(2): 180-185, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-39005096

ABSTRACT

PURPOSE: To investigate the efficacy of a modified maxillary protraction appliance in patients of skeletal Class Ⅲ with crowding. METHODS: Forty patients with skeletal Class Ⅲ malocclusion were divided into two groups, with 20 patients in each group. The experimental group had molar in a neutral or distal relationship and applied a modified maxillary protraction appliance, while the control group had molar mesial relationship and applied a conventional maxillary protraction appliance. Lateral cephalometric radiographs were taken before and after treatment in both groups for comparison. SPSS 22.0 software package was used for data analysis. RESULTS: The angle measurements taken before and after treatment showed a significant increase in SNA, ANB, SN-MP and U4-SN(P<0.01), while SNB decreased(P<0.01) in both groups. SN-OL changes were statistically different before and after treatment in the experimental group(P<0.05). The sagittal measurements before and after treatment in both groups showed significant alterations in all(P<0.05) but the length of the maxillary arch in both groups. For vertical measurements, U1-PP, L1-MP, U4-SN, U6-SN, and ANS-ME all increased (P<0.05), while the changes of U4-PP and U6-PP in the two groups before and after treatment were statistically different(P<0.05). Compared with the control group, the experimental group had a significantly increased maxillary arch length, a more remote location at U6, and a less variable molar relationship after treatment(P<0.01). The two groups showed a variable amount of cephalometric measurements before and after treatment: the experimental group had a significant increase in maxillary arch length, a more remote position at U6, and a smaller change in molar relationship compared to the control group(P<0.01). CONCLUSIONS: The modified maxillary protraction appliance showed good results for maxillary protraction and pushing the molar distally in patients with skeletal Class Ⅲ with crowding at neutral or distal molar relationship.


Subject(s)
Cephalometry , Malocclusion, Angle Class III , Maxilla , Humans , Malocclusion, Angle Class III/therapy , Malocclusion/therapy
2.
Int J Med Sci ; 21(9): 1604-1611, 2024.
Article in English | MEDLINE | ID: mdl-39006846

ABSTRACT

Purpose: To investigate morphological and hemodynamic characteristics of the ophthalmic artery (OA) in patients with white matter hyperintensity (WMH), and the association of the presence and severity of WMH with OA characteristics. Methods: This cross-sectional study included 44 eyes of 25 patients with WMH and 38 eyes of 19 controls. The Fazekas scale was adopted as criteria for evaluating the severity of white matter hyperintensities. The morphological characteristics of the OA were measured on the basis of three-dimensional reconstruction. The hemodynamic parameters of the OA were calculated using computational fluid dynamics simulations. Results: Compared with the control group, the diameter (16.0±0.27 mm vs. 1.71±0.18 mm, P=0.029), median blood flow velocity (0.12 m/s vs. 0.22 m/s, P<0.001), mass flow ratio (2.16% vs. 3.94%, P=0.012) and wall shear stress (2.65 Pa vs. 9.31 Pa, P<0.001) of the OA in patients with WMH were significantly decreased. After adjusting for confounding factors, the diameter, blood flow velocity, wall shear stress, and mass flow ratio of the OA were significantly associated with the presence of WMH. Male sex and high low-density protein level were associated with moderate-to-severe total WMH, and smoking was associated with the moderate-to-severe periventricular WMH. Conclusions: The diameter, blood flow velocity, mass flow ratio, and wall shear stress of the OA were independently associated with the presence of WMH. Atherosclerosis might be involved in the common mechanism of the occurrence of WMH and the OA changes.


Subject(s)
Hemodynamics , Ophthalmic Artery , White Matter , Humans , Male , Female , Ophthalmic Artery/diagnostic imaging , Ophthalmic Artery/physiopathology , White Matter/diagnostic imaging , White Matter/physiopathology , White Matter/blood supply , White Matter/pathology , Cross-Sectional Studies , Hemodynamics/physiology , Middle Aged , Aged , Blood Flow Velocity , Magnetic Resonance Imaging , Adult
3.
Sci Rep ; 14(1): 15107, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956066

ABSTRACT

Ferroptosis is an iron-dependent cell death form characterized by reactive oxygen species (ROS) overgeneration and lipid peroxidation. Myricetin, a flavonoid that exists in numerous plants, exhibits potent antioxidant capacity. Given that iron accumulation and ROS-provoked dopaminergic neuron death are the two main pathological hallmarks of Parkinson's disease (PD), we aimed to investigate whether myricetin decreases neuronal death through suppressing ferroptosis. The PD models were established by intraperitoneally injecting 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into rats and by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+), respectively. Ferroptosis was identified by assessing the levels of Fe2+, ROS, malondialdehyde (MDA), and glutathione (GSH). The results demonstrated that myricetin treatment effectively mitigated MPTP-triggered motor impairment, dopamine neuronal death, and α-synuclein (α-Syn) accumulation in PD models. Myricetin also alleviated MPTP-induced ferroptosis, as evidenced by decreased levels of Fe2+, ROS, and MDA and increased levels of GSH in the substantia nigra (SN) and serum in PD models. All these changes were reversed by erastin, a ferroptosis activator. In vitro, myricetin treatment restored SH-SY5Y cell viability and alleviated MPP+-induced SH-SY5Y cell ferroptosis. Mechanistically, myricetin accelerated nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and subsequent glutathione peroxidase 4 (Gpx4) expression in MPP+-treated SH-SY5Y cells, two critical inhibitors of ferroptosis. Collectively, these data demonstrate that myricetin may be a potential agent for decreasing dopaminergic neuron death by inhibiting ferroptosis in PD.


Subject(s)
Disease Models, Animal , Dopaminergic Neurons , Ferroptosis , Flavonoids , Reactive Oxygen Species , Ferroptosis/drug effects , Animals , Flavonoids/pharmacology , Rats , Male , Reactive Oxygen Species/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Humans , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Cell Line, Tumor , Iron/metabolism , alpha-Synuclein/metabolism , Rats, Sprague-Dawley , Glutathione/metabolism , Lipid Peroxidation/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , NF-E2-Related Factor 2/metabolism
4.
Materials (Basel) ; 17(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998129

ABSTRACT

Strengthening the interfacial contact between the reactive components effectively boosts the energy release of energetic materials. In this study, we aimed to create a close-knit interfacial contact condition between aluminum nanoparticles (Al NPs) and Polyvinylidene fluoride-hexafluoropropylene (P(VDF-HFP)) through hydrolytic adsorption and assembling 1H, 1H, 2H, 2H-Perfluorododecyltrichlorosilane (FTCS) on the surface of Al NPs. Leveraging hydrogen bonding between -CF and -CH and the interaction between C-F⋯F-C groups, the adsorbed FTCS directly leads to the growth of the P(VDF-HFP) coating layer around the treated Al NPs, yielding Al@FTCS/P(VDF-HFP) energetic composites. In comparison with the ultrasonically processed Al/P(VDF-HFP) mixture, thermal analysis reveals that Al@FTCS/P(VDF-HFP) exhibits a 57 °C lower reaction onset temperature and a 1646 J/g increase in heat release. Associated combustion tests demonstrate a 52% shorter ignition delay, 62% shorter combustion time, and a 288% faster pressurization rate. These improvements in energetic characteristics stem from the reactivity activation of FTCS towards Al NPs by the etching effect to the surface Al2O3. Moreover, enhanced interfacial contact facilitated by the FTCS-directed growth of P(VDF-HFP) around Al NPs further accelerates the whole reaction process.

5.
J Am Heart Assoc ; : e035337, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979802

ABSTRACT

BACKGROUND: Statins are widely used for treating patients with ischemic stroke at risk of secondary cerebrovascular events. It is unknown whether Asian populations benefit from more intensive statin-based therapy for stroke recurrence. Therefore, in the present study we evaluated the effectiveness and safety of high-dose and moderate-dose statins for patients who had experienced mild ischemic stroke during the acute period. METHODS AND RESULTS: This multicenter prospective study included patients with mild ischemic stroke who presented within 72 hours of symptom onset. The outcomes of patients in the high-intensity and moderate-intensity statin treatment groups were compared, with the main efficacy outcome being stroke recurrence and the primary safety end point being intracranial hemorrhage. The propensity score matching method was employed to control for imbalances in baseline variables. Subgroup analyses were conducted to evaluate group differences. In total, the data of 2950 patients were analyzed at 3 months, and the data of 2764 patients were analyzed at 12 months due to loss to follow-up. According to the multivariable Cox analyses adjusted for potential confounders, stroke recurrence occurred similarly in the high-intensity statin and moderate-intensity statin groups (3 months: adjusted hazard ratio [HR], 1.12 [95% CI, 0.85-1.49]; P=0.424; 12 months: adjusted HR, 1.08 [95% CI, 0.86-1.34]; P=0.519). High-intensity statin therapy was associated with an increased risk of intracranial hemorrhage (3 months: adjusted HR, 1.81 [95% CI, 1.00-3.25]; P=0.048; 12 months: adjusted HR, 1.86 [95% CI, 1.10-3.16]; P=0.021). The results from the propensity score-matched analyses were consistent with those from the Cox proportional hazards analysis. CONCLUSIONS: Compared with moderate-intensity statin therapy, high-dose statin therapy may not decrease the risk of mild, noncardiogenic ischemic stroke recurrence but may increase the risk of intracranial hemorrhage. REGISTRATION: URL: www.chictr.org.cn/. Unique Identifier: ChiCTR1900025214.

6.
Se Pu ; 42(7): 702-710, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-38966978

ABSTRACT

Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.


Subject(s)
Citric Acid Cycle , Humans , HeLa Cells , Succinic Acid/metabolism , Succinic Acid/chemistry , Fumarates/metabolism , Fumarates/chemistry
7.
Angew Chem Int Ed Engl ; : e202408379, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970405

ABSTRACT

Formamide (HCONH2) plays a pivotal role in the manufacture of a diverse array of chemicals, fertilizers, and pharmaceuticals. Photocatalysis holds great promise for green fabrication of carbon-nitrogen (C-N) compounds owing to its environmental friendliness and mild redox capability. However, the selective formation of the C-N bond presents a significant challenge in the photocatalytic synthesis of C-N compounds. This work developed a photocatalytic radical coupling method for the formamide synthesis from co-oxidation of ammonia (NH3) and methanol (CH3OH). An exceptional formamide yield rate of 5.47 ± 0.03 mmol·gcat-1·h-1 (911.87 ± 0.05 mmol·gBi-1·h-1) was achieved over atomically dispersed Bi sites (BiSAs) on TiO2. An accumulation of 45.0 mmol·gcat-1 (0.2 g·gcat-1) of formamide was achieved after long-term illumination, representing the highest level of photocatalytic C-N compounds synthesis. The critical C-N coupling for formamide formation originated from the "σ-σ" interaction between electrophilic ●CH2OH with nucleophilic ●NH2 radical. The  BiSAs sites facilitated the electron transfer between reactants and photocatalysts and enhanced the nucleophilic attack of â—NH2 radical at the â—CH2OH radical, thereby advancing the selective C-N bond formation. This work deepens the understanding of the C-N coupling mechanism and offers an alternative and intriguing photocatalytic approach for the efficient and sustainable production of C-N compounds.

8.
Sci Rep ; 14(1): 14006, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890409

ABSTRACT

Smartphone sensors have gained considerable traction in Human Activity Recognition (HAR), drawing attention for their diverse applications. Accelerometer data monitoring holds promise in understanding students' physical activities, fostering healthier lifestyles. This technology tracks exercise routines, sedentary behavior, and overall fitness levels, potentially encouraging better habits, preempting health issues, and bolstering students' well-being. Traditionally, HAR involved analyzing signals linked to physical activities using handcrafted features. However, recent years have witnessed the integration of deep learning into HAR tasks, leveraging digital physiological signals from smartwatches and learning features automatically from raw sensory data. The Long Short-Term Memory (LSTM) network stands out as a potent algorithm for analyzing physiological signals, promising improved accuracy and scalability in automated signal analysis. In this article, we propose a feature analysis framework for recognizing student activity and monitoring health based on smartphone accelerometer data through an edge computing platform. Our objective is to boost HAR performance by accounting for the dynamic nature of human behavior. Nonetheless, the current LSTM network's presetting of hidden units and initial learning rate relies on prior knowledge, potentially leading to suboptimal states. To counter this, we employ Bidirectional LSTM (BiLSTM), enhancing sequence processing models. Furthermore, Bayesian optimization aids in fine-tuning the BiLSTM model architecture. Through fivefold cross-validation on training and testing datasets, our model showcases a classification accuracy of 97.5% on the tested dataset. Moreover, edge computing offers real-time processing, reduced latency, enhanced privacy, bandwidth efficiency, offline capabilities, energy efficiency, personalization, and scalability. Extensive experimental results validate that our proposed approach surpasses state-of-the-art methodologies in recognizing human activities and monitoring health based on smartphone accelerometer data.


Subject(s)
Accelerometry , Exercise , Smartphone , Students , Humans , Accelerometry/methods , Accelerometry/instrumentation , Exercise/physiology , Deep Learning , Algorithms , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation
9.
BMC Med Genomics ; 17(1): 164, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898455

ABSTRACT

BACKGROUND: Immunoregulatory drugs regulate the ubiquitin-proteasome system, which is the main treatment for multiple myeloma (MM) at present. In this study, bioinformatics analysis was used to construct the risk model and evaluate the prognostic value of ubiquitination-related genes in MM. METHODS AND RESULTS: The data on ubiquitination-related genes and MM samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The consistent cluster analysis and ESTIMATE algorithm were used to create distinct clusters. The MM prognostic risk model was constructed through single-factor and multiple-factor analysis. The ROC curve was plotted to compare the survival difference between high- and low-risk groups. The nomogram was used to validate the predictive capability of the risk model. A total of 87 ubiquitination-related genes were obtained, with 47 genes showing high expression in the MM group. According to the consistent cluster analysis, 4 clusters were determined. The immune infiltration, survival, and prognosis differed significantly among the 4 clusters. The tumor purity was higher in clusters 1 and 3 than in clusters 2 and 4, while the immune score and stromal score were lower in clusters 1 and 3. The proportion of B cells memory, plasma cells, and T cells CD4 naïve was the lowest in cluster 4. The model genes KLHL24, HERC6, USP3, TNIP1, and CISH were highly expressed in the high-risk group. AICAr and BMS.754,807 exhibited higher drug sensitivity in the low-risk group, whereas Bleomycin showed higher drug sensitivity in the high-risk group. The nomogram of the risk model demonstrated good efficacy in predicting the survival of MM patients using TCGA and GEO datasets. CONCLUSIONS: The risk model constructed by ubiquitination-related genes can be effectively used to predict the prognosis of MM patients. KLHL24, HERC6, USP3, TNIP1, and CISH genes in MM warrant further investigation as therapeutic targets and to combat drug resistance.


Subject(s)
Computational Biology , Multiple Myeloma , Ubiquitination , Humans , Multiple Myeloma/genetics , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Computational Biology/methods , Prognosis , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Nomograms , Cluster Analysis
10.
Sci Total Environ ; 943: 173694, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38852868

ABSTRACT

The escalation of global change has resulted in heightened frequencies and intensities of environmental fluctuations within coral reef ecosystems. Corals originating from marginal reefs have potentially enhanced their adaptive capabilities in response to these environmental variations through processes of local adaptation. However, the intricate mechanisms driving this phenomenon remain a subject of limited investigation. This study aimed to investigate how corals in Luhuitou reef, a representative relatively high-latitude reef in China, adapt to seasonal fluctuations in seawater temperature and light availability. We conducted a 190-day plantation experiment with the widespread species, Galaxea fascicularis, in Luhuitou local, and from Meiji reef, a typical offshore tropical reef, to Luhuitou as comparison. Drawing upon insights from physiological adaptations, we focused on fatty acid (FA) profiles to unravel the trophic strategies of G. fascicularis to cope with environmental fluctuations from two origins. Our main findings are threefold: 1) Native corals exhibited a stronger physiological resilience compared to those transplanted from Meiji. 2) Corals from both origins consumed large quantities of energy reserves in winter, during which FA profiles of local corals altered, while the change of FA profiles of corals from Meiji was probably due to the excessive consumption of saturated fatty acid (SFA). 3) The better resilience of native corals is related to high levels of functional polyunsaturated fatty acid (PUFA), while insufficient nutrient reserves, possibly due to weak heterotrophic ability, result in the obstruction of the synthesis pathway of PUFA for corals from Meiji, leading to their intolerance to environmental changes. Consequently, we suggest that the tolerance of G. fascicularis to environmental fluctuations is determined by their local adapted trophic strategies. Furthermore, our findings underscore the notion that the rapid adaptation of relatively high-latitude corals to seasonal environmental fluctuations might not be readily attainable for their tropical counterparts within a brief timeframe.


Subject(s)
Adaptation, Physiological , Anthozoa , Coral Reefs , Anthozoa/physiology , Animals , China , Fatty Acids , Seasons , Seawater/chemistry , Temperature , Environmental Monitoring
11.
Cell Discov ; 10(1): 66, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886367

ABSTRACT

Thermosensation is vital for the survival, propagation, and adaption of all organisms, but its mechanism is not fully understood yet. Here, we find that TMC6, a membrane protein of unknown function, is highly expressed in dorsal root ganglion (DRG) neurons and functions as a Gαq-coupled G protein-coupled receptor (GPCR)-like receptor to sense noxious heat. TMC6-deficient mice display a substantial impairment in noxious heat sensation while maintaining normal perception of cold, warmth, touch, and mechanical pain. Further studies show that TMC6 interacts with Gαq via its intracellular C-terminal region spanning Ser780 to Pro810. Specifically disrupting such interaction using polypeptide in DRG neurons, genetically ablating Gαq, or pharmacologically blocking Gαq-coupled GPCR signaling can replicate the phenotype of TMC6 deficient mice regarding noxious heat sensation. Noxious heat stimulation triggers intracellular calcium release from the endoplasmic reticulum (ER) of TMC6- but not control vector-transfected HEK293T cell, which can be significantly inhibited by blocking PLC or IP3R. Consistently, noxious heat-induced intracellular Ca2+ release from ER and action potentials of DRG neurons largely reduced when ablating TMC6 or blocking Gαq/PLC/IP3R signaling pathway as well. In summary, our findings indicate that TMC6 can directly function as a Gαq-coupled GPCR-like receptor sensing noxious heat.

12.
Proc Natl Acad Sci U S A ; 121(26): e2318761121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38885389

ABSTRACT

Archaea produce unique membrane-spanning lipids (MSLs), termed glycerol dialkyl glycerol tetraethers (GDGTs), which aid in adaptive responses to various environmental challenges. GDGTs can be modified through cyclization, cross-linking, methylation, hydroxylation, and desaturation, resulting in structurally distinct GDGT lipids. Here, we report the identification of radical SAM proteins responsible for two of these modifications-a glycerol monoalkyl glycerol tetraether (GMGT) synthase (Gms), responsible for covalently cross-linking the two hydrocarbon tails of a GDGT to produce GMGTs, and a GMGT methylase (Gmm), capable of methylating the core hydrocarbon tail. Heterologous expression of Gms proteins from various archaea in Thermococcus kodakarensis results in the production of GMGTs in two isomeric forms. Further, coexpression of Gms and Gmm produces mono- and dimethylated GMGTs and minor amounts of trimethylated GMGTs with only trace GDGT methylation. Phylogenetic analyses reveal the presence of Gms homologs in diverse archaeal genomes spanning all four archaeal superphyla and in multiple bacterial phyla with the genetic potential to synthesize fatty acid-based MSLs, demonstrating that GMGT production may be more widespread than previously appreciated. We demonstrate GMGT production in three Gms-encoding archaea, identifying an increase in GMGTs in response to elevated temperature in two Archaeoglobus species and the production of GMGTs with up to six rings in Vulcanisaeta distributa. The occurrence of such highly cyclized GMGTs has been limited to environmental samples and their detection in culture demonstrates the utility of combining genetic, bioinformatic, and lipid analyses to identify producers of distinct archaeal membrane lipids.


Subject(s)
Archaea , Archaeal Proteins , Phylogeny , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Archaea/metabolism , Archaea/genetics , Thermococcus/metabolism , Thermococcus/genetics , Glyceryl Ethers/metabolism , Membrane Lipids/metabolism , Membrane Lipids/biosynthesis
13.
Photochem Photobiol Sci ; 23(6): 1031-1039, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839721

ABSTRACT

A novel cyclic chalcone fluorescent probe C-PN was synthesized to detect ONOO-. After reaction with peroxynitrite, the double bond of C-PN in the cyclic chalcone structure was disconnected, which caused the change of intramolecular charge transfer (ICT) effect, emitting blue fluorescence and quenching orange red fluorescence. Visible to the naked eye, the color of the probe solution changed. The probe showed low sensitivity (detection limit = 20.2 nm), short response time (less than 60 s) at low concentration of ONOO-, good visibility, and good selectivity and stability for ONOO-.

14.
Org Lett ; 26(23): 4945-4952, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38832831

ABSTRACT

Described herein is an efficient copper-catalyzed tandem alkyne indolylcupration-initiated 1,2-indole migration/6π-electrocyclic reaction of allene-ynamides with indoles by the in situ-generated metal carbenes. This method allows the efficient synthesis of valuable indole-fused spirobenzo[f]indole-cyclohexanes with high regio- and stereoselectivity. In addition, this reaction affords rapid access to the functionalized spirobenzo[f]indole-cyclohexanes in the absence of indoles by a presumable 5-exo-dig cyclization/Friedel-Crafts alkylation via copper-containing all-carbon 1,4-dipoles.

15.
Technol Cancer Res Treat ; 23: 15330338241260331, 2024.
Article in English | MEDLINE | ID: mdl-38860337

ABSTRACT

OBJECTIVE: To compare the ability of gadolinium ethoxybenzyl dimeglumine (Gd-EOB-DTPA) and gadobenate dimeglumine (Gd-BOPTA) to display the 3 major features recommended by the Liver Imaging Reporting and Data System (LI-RADS 2018v) for diagnosing hepatocellular carcinoma (HCC). MATERIALS AND METHODS: In this retrospective study, we included 98 HCC lesions that were scanned with either Gd-EOB-DTPA-MR or Gd-BOPTA-M.For each lesion, we collected multiple variables, including size and enhancement pattern in the arterial phase (AP), portal venous phase (PVP), transitional phase (TP), delayed phase (DP), and hepatobiliary phase (HBP). The lesion-to-liver contrast (LLC) was measured and calculated for each phase and then compared between the 2 contrast agents. A P value < .05 was considered statistically significant. The display efficiency of the LLC between Gd-BOPTA and Gd-EOB-DTPA for HCC features was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS: Between Gd-BOPTA and Gd-EOB-DTPA, significant differences were observed regarding the display efficiency for capsule enhancement and the LLC in the AP/PVP/DP (P < .05), but there was no significant difference regarding the LLC in the TP/HBP. Both Gd-BOPTA and Gd-EOB-DTPA had good display efficiency in each phase (AUCmin > 0.750). When conducting a total evaluation of the combined data across the 5 phases, the display efficiency was excellent (AUC > 0.950). CONCLUSION: Gd-BOPTA and Gd-EOB-DTPA are liver-specific contrast agents widely used in clinical practice. They have their own characteristics in displaying the 3 main signs of HCC. For accurate noninvasive diagnosis, the choice of agent should be made according to the specific situation.


Subject(s)
Carcinoma, Hepatocellular , Contrast Media , Gadolinium DTPA , Liver Neoplasms , Magnetic Resonance Imaging , Meglumine , Organometallic Compounds , ROC Curve , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/diagnosis , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Meglumine/analogs & derivatives , Middle Aged , Aged , Retrospective Studies , Adult , Image Enhancement/methods , Aged, 80 and over
16.
Microsyst Nanoeng ; 10: 76, 2024.
Article in English | MEDLINE | ID: mdl-38863795

ABSTRACT

Silicon interposers embedded with ultra-deep through-silicon vias (TSVs) are in great demand for the heterogeneous integration and packaging of opto-electronic chiplets and microelectromechanical systems (MEMS) devices. Considering the cost-effective and reliable manufacturing of ultra-deep TSVs, the formation of continuous barrier and seed layers remains a crucial challenge to solve. Herein, we present a novel dual catalysis-based electroless plating (ELP) technique by tailoring polyimide (PI) liner surfaces to fabricate dense combined Ni barrier/seed layers in ultra-deep TSVs. In additional to the conventional acid catalysis procedure, a prior catalytic step in an alkaline environment is proposed to hydrolyze the PI surface into a polyamide acid (PAA) interfacial layer, resulting in additional catalysts and the formation of a dense Ni layer that can function as both a barrier layer and a seed layer, particularly at the bottom of the deep TSV. TSVs with depths larger than 500 µm and no voids are successfully fabricated in this study. The fabrication process involves low costs and temperatures. For a fabricated 530-µm-deep TSV with a diameter of 70 µm, the measured depletion capacitance and leakage current are approximately 1.3 pF and 1.7 pA at 20 V, respectively, indicating good electrical properties. The proposed fabrication strategy can provide a cost-effective and feasible solution to the challenge of manufacturing ultra-deep TSVs for modern 3D heterogeneous integration and packaging applications.

17.
Dalton Trans ; 53(25): 10499-10510, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38841816

ABSTRACT

The burgeoning interest in the field of molecular magnetism is to perceive the high magnetic anisotropy in different geometries of metal complexes and hence to draw a magneto-structural correlation. Despite a handful of examples to exemplify the magnetic anisotropy in various coordination geometries of mononuclear complexes, the magnetic anisotropies for two different coordination geometries are underexplored. Employing an appropriate synthetic strategy utilizing the ligand LH2 [2,2'-{(1E,1'E)-pyridine2,6-diyl-bis(methaneylylidine)}-bis(azaneylylidine)diphenol] and cobalt halide salts in a 1 : 2 stoichiometric ratio in the presence of triethylamine allowed us to report a new family of dinuclear cobalt complexes [CoII2X2(L)(P)(Q)]·S with varying terminal halides [X = Cl, P = CH3CN, Q = H2O, S = H2O (1), X = Br, P = CH3CN, Q = H2O, S = H2O (2), X = I, P = CH3CN, and Q = CH3CN (3)]. All these complexes are characterized through single crystal X-ray crystallography, which reveals their crystallization in the monoclinic system P21/n space group with nearly identical structural features. These complexes share vital components, including Co(II) centers, a fully deprotonated ligand [L]2-, halide ions, and solvent molecules. The [L]2- ligand contains two Co(II) centers, where phenolate oxygen atoms bridge the Co(II) centers, forming a Co2O2 four-membered ring. Co1 demonstrates a distorted pentagonal-bipyramidal geometry with axial positions for solvent molecules, while Co2 displays a distorted tetrahedral geometry involving phenolate oxygen atoms and halide ions. Temperature-dependent dc magnetic susceptibility measurements were conducted on 1-3 within a range of 2 to 300 K at 1 kOe. The χmT vs. T plots exhibit similar trends, with χmT values at 300 K higher than the spin-only value, signifying a significant orbital contribution. As the temperature decreases, χmT decreases smoothly in all the complexes; however, no clear saturation at low temperatures is observed. Field-dependent magnetization measurements indicate a rapid increase below 20 kOe, with no hysteresis and a low magnetic blocking temperature. DFT and CASSCF/NEVPT2 theoretical calculations were performed to perceive the magnetic interaction and single-ion anisotropies of Co(II) ions in various ligand-field environments.

18.
Ren Fail ; 46(1): 2351473, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38915241

ABSTRACT

OBJECTIVE: Liraglutide, a glucagon-like peptide-1 receptor agonist, has been shown to regulate blood sugar and control body weight, but its ability to treat obesity-related nephropathy has been poorly studied. Therefore, this study was designed to observe the characteristics and potential mechanism of liraglutide against obesity-related kidney disease. METHODS: Thirty-six C57BL/6J male mice were randomly divided into six groups (n = 6 per group). Obesity-related nephropathy was induced in mice by continuous feeding of high-fat diet (HFD) for 12 weeks. After 12 weeks, liraglutide (0.6 mg/kg) and AMP-activated protein kinase (AMPK) agonists bortezomib (200 µg/kg) were injected for 12 weeks, respectively. Enzyme-linked immunosorbent assay was employed to detect the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, blood urea nitrogen, creatinine in serum, as well as urinary protein in urine. Besides, hematoxylin-eosin staining and periodic acid-Schiff staining were used to observe the pathological changes of kidney tissue; immunohistochemistry, western blot, and real-time quantitative PCR to assess the calmodulin-dependent protein kinase kinase beta (CaMKKß)/AMPK signaling pathway activation. RESULTS: Liraglutide significantly reduced serum lipid loading, improved kidney function, and relieved kidney histopathological damage and glycogen deposition in the mouse model of obesity-related kidney disease induced by HFD. In addition, liraglutide also significantly inhibited the CaMKKß/AMPK signaling pathway in kidney tissue of HFD-induced mice. However, bortezomib partially reversed the therapeutic effect of liraglutide on HDF-induced nephropathy in mice. CONCLUSIONS: Liraglutide has a therapeutic effect on obesity-related kidney disease, and such an effect may be achieved by inhibiting the CaMKKß/AMPK signaling pathway in kidney tissue.


Subject(s)
AMP-Activated Protein Kinases , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Diet, High-Fat , Liraglutide , Mice, Inbred C57BL , Obesity , Signal Transduction , Animals , Liraglutide/pharmacology , Liraglutide/therapeutic use , Male , Diet, High-Fat/adverse effects , Mice , AMP-Activated Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Signal Transduction/drug effects , Obesity/complications , Obesity/drug therapy , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Disease Models, Animal , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
19.
Transl Oncol ; 47: 102012, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889521

ABSTRACT

AIM: To compare the dosimetric advantages and disadvantages between hybrid intensity-modulated radiation therapy (h-IMRT) and the volumetric modulated arc therapy (VMAT) technique in hypofractionated whole-breast irradiation (HF-WBI) for early-stage breast cancer (BC). METHODS: The dose distribution of h-IMRT and VMAT plans was compared in 20 breast cancer patients. This comparison included evaluation of dosimetric parameters using dose volume histograms (DVHs) for the planning target volume (PTV) and organs-at-risk (OARs). Additionally, the study examined the normal tissue complication probability (NTCP), the second cancer complication probability (SCCP) and the tumor control probability (TCP) based on different models. RESULTS: Significant differences were detected between the two plans, in terms of Machine units (MUs), the control points, 95 % volume (V95 %), dose homogeneity index (DHI) and conformity index (CI). The endpoint of grade II radiation pneumonitis and cardiac death due to ischemic heart disease were assessed. In h-IMRT plan, the NTCP values were marginally lower for radiation pneumonitis and slightly higher for cardiac death compared to VMAT plan, as determined by the Lyman-Kutcher-Burman model. The Schneider model was employed to predict the SCCP for both the bilateral lungs and contralateral breast, the results demonstrate that the h-IMRT plan outperforms the VMAT plan, with statistical significance. Additionally, the LQ-Poisson model was employed to forecast the TCP of the PTV, showing that the h-IMRT plan outperformed the VMAT plan (P > 0.05). CONCLUSION: The h-IMRT technique, offering superior dose coverage and better therapeutic efficacy with fewer side effects as calculated by models, is more suitable for HF-WBI compared to the VMAT technique.

20.
Front Neurol ; 15: 1388131, 2024.
Article in English | MEDLINE | ID: mdl-38846031

ABSTRACT

Background: The association between body mass index (BMI) and rapid eye-movement (REM) sleep-related behavioral disorder (RBD) in Parkinson's disease (PD) remains unknown. Our study was to investigate the association of BMI with RBD in PD patients. Methods: In this cross-sectional study, a total of 1,115 PD participants were enrolled from Parkinson's Progression Markers Initiative (PPMI) database. BMI was calculated as weight divided by height squared. RBD was defined as the RBD questionnaire (RBDSQ) score with the cutoff of 5 or more assessed. Univariable and multivariable logistic regression models were performed to examine the associations between BMI and the prevalence of RBD. Non-linear correlations were explored with use of restricted cubic spline (RCS) analysis. And the inflection point was determined by the two-line piecewise linear models. Results: We identified 426 (38.2%) RBD. The proportion of underweight, normal, overweight and obese was 2.61, 36.59, 40.36, and 20.44%, respectively. In the multivariate logistic regression model with full adjustment for confounding variables, obese individuals had an odds ratio of 1.77 (95% confidence interval: 1.21 to 2.59) with RBD compared with those of normal weight. In the RCS models with three knots, BMI showed a non-linear association with RBD. The turning points of BMI estimated from piecewise linear models were of 28.16 kg/m2, 28.10 kg/m2, and 28.23 kg/m2 derived from univariable and multivariable adjusted logistic regression models. The effect modification by depression on the association between BMI and RBD in PD was also found in this study. Furthermore, the sensitivity analyses linked with cognition, education, and ethnic groups indicated the robustness of our results. Conclusion: The current study found a significant dose-response association between BMI and RBD with a depression-based difference in the impact of BMI on RBD in PD patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...