Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 14559, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914616

ABSTRACT

Understanding the nitrogen isotopic variations of individual amino acids (AAs) is essential for utilizing the nitrogen isotope values of individual amino acids (δ15N-AA) as source indicators to identify proteinaceous matter originating from biomass combustion processes. However, the nitrogen isotope effects (ε) associated with the degradation of individual amino acids during combustion processes have not been previously explored. In this study, we measured the nitrogen isotope values of residual free amino acids -following a series of controlled combustion experiments at temperatures of 160-240 °C and durations of 2 min to 8 h, as described in Part 1. δ15N values of proline, aspartate, alanine, valine, glycine, leucine, and isoleucine are more positive than their initial δ15N values after prolonged combustion. Variations in δ15N values of the most AAs conform to the Rayleigh fractionation during combustion and their nitrogen isotope effects (ε) are greatly impacted by their respective combustion degradation pathways. This is the first time the ε values associated with the degradation pathways of AAs during combustion have been characterized. Only the ε values associated with Pathway 1 (dehydration to form dipeptide) and 2 (simultaneous deamination and decarboxylation) are found to be significant and temperature-dependent, ranging from + 2.9 to 6.4‰ and + 0.9‰ to + 3.8‰, respectively. Conversely, ε values associated with other pathways are minor. This improves the current understanding on the degradation mechanisms of protein nitrogen during biomass burning.


Subject(s)
Amino Acids , Nitrogen Isotopes , Amino Acids/metabolism , Nitrogen Isotopes/analysis , Kinetics , Biomass , Temperature
2.
Environ Sci Ecotechnol ; 21: 100432, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38832301

ABSTRACT

The size and composition of particulate matter (PM) are pivotal in determining its adverse health effects. It is important to understand PM's retention by plants to facilitate its atmospheric removal. However, the distinctions between the size and composition of naturally fallen PM (NFPM) and leaf-deposited PM (LDPM) are not well-documented. Here we utilize a single-particle aerosol mass spectrometer, coupled with a PM resuspension chamber, to analyze these differences. We find that LDPM particles are 6.8-97.3 % larger than NFPM. Employing a neural network algorithm based on adaptive resonance theory, we have identified distinct compositional profiles: NFPM predominantly consists of organic carbon (OC; 31.2 %) and potassium-rich components (19.1 %), whereas LDPM are largely composed of crustal species (53.9-60.6 %). Interestingly, coniferous species retain higher OC content (11.5-13.7 %) compared to broad-leaved species (0.5-1.2 %), while the levoglucosan content exhibit an opposite trend. Our study highlights the active role of tree leaves in modifying PM composition beyond mere passive capture, advocating for a strategic approach to species selection in urban greening initiatives to enhance PM mitigation. These insights provide guidance for urban planners and environmentalists in implementing nature-based solutions to improve urban air quality.

3.
Sci Total Environ ; 867: 161509, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36638982

ABSTRACT

The Tibetan Plateau is the third pole of the world, with an essential role in regulating Northern Hemisphere climate. Previous studies showed that atmospheric aerosols over the Tibetan Plateau are influenced by biomass burning (BB) products from South and Southeast Asia. In fact, open biomass burning (OBB) is also an important form of BB in Southeast Asian countries, causing serious springtime air pollution yearly. However, there are still scientific gaps in the contribution of OBB to surrounding regional aerosols, especially on the Tibetan Plateau. In order to quantify this contribution, we collected samples of fine particulate matter and derived the concentrations of major water soluble ion, water soluble organic carbon (WSOC), and total carbon (TC) and total nitrogen (TN) as well as the dual isotopic compositions of carbon and nitrogen (δ13C and δ15N) during March-June on the southeastern Tibetan Plateau. δ13C and δ15N showed no significant difference (p > 0.05) between the OBB and non-OBB periods. Furthermore, both δ13C and δ15N (-25.7 ± 0.7 ‰ and 8.0 ± 3.6 ‰) values calculated during the whole sampling period were similar to the BB value, indicating that the primary source of TC and TN in aerosols was BB, whether OBB or non-OBB burning periods. TC and TN concentrations during the OBB period (6.5 ± 2.9 µg m-3 and 1.2 ± 0.4 µg m-3, respectively) were significantly higher than during the non-OBB period (4.1 ± 1.7 µg m-3, with p = 0.014, and 0.7 ± 0.3 µg m-3, with p = 0.013, respectively). Active fire data and surface smoke concentrations further indicated that BB emissions from Southeast Asia were higher during the OBB period. This suggests that OBB-related high BB emissions significantly enhanced atmospheric aerosols concentrations on the southeastern Tibetan Plateau.

4.
Sci Total Environ ; 773: 145668, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33940754

ABSTRACT

Combustion-derived black carbon (BC) is increasingly recognized as a significant pollutant that can have adverse effects on the atmospheric environment, human health, and regional climate. Fossil fuel combustion is the main source of BC, yet understanding of the relative contributions to BC from coal and liquid fuel combustion remains incomplete. Moreover, few studies have assessed the relative contributions based on long-term continuous daily field observations. This study adopted a Bayesian model of a three-dimensional array of a stable carbon isotope and the ratios of non-sea-salt K+ to BC and ΔBC/ΔCO of one year's daily observations (from September 1, 2017 to August 31, 2018) to constrain source apportionment of BC in Beijing (China). Results showed that both the BC and the carbon isotope concentrations exhibited strong seasonal variability, and that the annual BC concentration has decreased significantly in recent years. The Bayesian model results also revealed that the relative contributions from the combustion of coal, liquid fuel, and biomass were 42% ± 18%, 42% ± 18%, and 16% ± 11%, respectively, with a larger contribution from coal (liquid fuel) combustion in winter and spring (summer and autumn). The seasonal variation of source appointment was attributed to local and regional fuel combustion coupled with meteorological conditions. With increasing PM2.5 level, the BC concentration derived from biomass burning increased fastest, followed by that derived from coal combustion. But concentration of secondary inorganic ions increased faster than BC as PM2.5 increased.

5.
Water Res ; 194: 116933, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33618106

ABSTRACT

Reservoirs have been constructed as clean energy sources in recent decades with various environmental impacts. Karst rivers typically exhibit high dissolved inorganic carbon (DIC) concentrations, whether and how reservoirs affect carbon cycling, especially organic carbon (OC)-related biogeochemical processes in karst rivers, are unclear. To fill this knowledge gap, multiple tracer methods (including fluorescence excitation-emission matrix (EEM), ultraviolet (UV) absorption, and stable carbon (δ13C) and radiocarbon (Δ14C) isotopes) were utilized to track composition and property changes of both particulate OC (POC) and dissolved OC (DOC) along river-transition-reservoir transects in the Southwest China karst area. The changes in chemical properties indicated that from the river to the reservoir, terrestrial POC is largely replaced by phytoplankton-derived OC, while gradual coloured dissolved organic matter (CDOM) removal and addition of phytoplankton-derived OC to the DOC pool occurred as water flowed to the reservoir. Higher primary production in the transition area than that in the reservoir area was observed, which may be caused by nutrient released from suspended particles. Within the reservoir, the production surpassed degradation in the upper 5 m, resulting in a net DIC transformation into DOC and POC and terrestrial DOM degradation. The primary production was then gradually weakened and microbial degradation became more important down the profile. It is estimated that ~3.1-6.3 mg L-1 (~15.5-31.5 mg-C m-2 (~10-21%)) DIC was integrated into the OC pool through the biological carbon pump (BCP) process in the upper 5 m in the transition and reservoir areas. Our results emphasize the reservoir impact on riverine OC transport, and due to their characteristics, karst areas exhibit a higher BCP potential which is sensitive to human activities (more nutrient are provided) than non-karst areas.


Subject(s)
Carbon , Environmental Monitoring , Carbon/analysis , Carbon Isotopes/analysis , China , Humans , Rivers
6.
Environ Sci Pollut Res Int ; 28(21): 26617-26627, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33492596

ABSTRACT

The increase of affected river reaches by reservoirs has drastically disturbed the original hydrological conditions, and subsequently influenced the nutrient biogeochemistry in the aquatic system, particularly in the cascade reservoir system. To understand the seasonal variation of nitrogen (N) behaviors in cascade reservoirs, hydrochemistry and nitrate dual isotopes (δ15N-NO3- and δ18O-NO3-) were conducted in a karst watershed (Wujiang River) in southwest China. The results showed that NO3--N accounted for almost 90% of the total dissolved nitrogen (TDN) concentration with high average concentration 3.8 ± 0.4 mg/L among four cascade reservoirs. Higher N concentration (4.0 ± 0.8 mg/L) and larger longitudinal variation were observed in summer than in other seasons. The relationship between the variation of NO3--N and dual isotopes in the profiles demonstrated that nitrification was dominated transformation, while assimilation contributed significantly in the epilimnion during spring and summer. The high dissolved oxygen concentration in the present cascade reservoirs system prevented the occurrence of N depletion processes in most of the reservoirs. Denitrification occurred in the oldest reservoir during winter with a rate ranging from 18 to 28%. The long-term record of surface water TDN concentration in reservoirs demonstrated an increase from 2.0 to 3.6 mg/L during the past two decades (~ 0.1 mg/L per year). The seasonal nitrate isotopic signature and continuously increased fertilizer application demonstrated that chemical fertilizer contribution significantly influenced NO3--N concentration in the karst cascade reservoirs. The research highlighted that the notable N increase in karst cascade reservoirs could influence the aquatic health in the region and further investigations were required.


Subject(s)
Nitrates , Water Pollutants, Chemical , China , Environmental Monitoring , Nitrates/analysis , Nitrogen/analysis , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis , Rivers , Seasons , Water Pollutants, Chemical/analysis
7.
Chemosphere ; 263: 127915, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297012

ABSTRACT

Nitrate (NO3-) has become recognized as the most important water-soluble ion in fine particulate (PM2.5), and has been proposed as a driving factor for regional haze formation. However, nitrate formation mechanisms are still poorly understood. In this study, PM2.5 samples were collected from September 2017 to August 2018 in Shijiazhuang, a city located on the North China Plain, and NO3-concentration, δ18O-NO3- and δ15N-NO3- values in PM2.5 were analyzed. NO3- concentrations increased as PM2.5 levels increased during both polluted and non-polluted days over the entire year. δ18O-NO3- values during cold months (63.5-103‰) were higher than those during warm months (50.3-85.4‰), these results suggested that the nitrate formation pathways shifted from the NO2 + OH (POH) in warm months to the N2O5 + H2O (PN2O5) and NO3 + VOCs (PNO3) pathways in cold months. Especially during cold months, δ18O-NO3- values increased from 65.2-79.9‰ to 80.7-96.2‰ when PM2.5 increased from ∼25 to >100 µg/m3, but when PM2.5 > 100 µg/m3, there were relatively small variations in δ18O-NO3-. These results suggested that nitrate formation pathways changed from POH to PN2O5 and PNO3 pathways when PM2.5 < 100 µg/m3, but that PN2O5 and PNO3 dominated nitrate production when PM2.5 > 100 µg/m3. Higher δ15N-NO3- values in warm months (-11.8-13.8‰) than in cold months (-0.7-22.6‰) may be attributed to differences in NOx emission sources and nitrogen isotopic fractionation among NOx and NO3-. These results provide information on the dual isotopic compositions of nitrate to understand nitrate formation pathways under different PM2.5 levels.


Subject(s)
Environmental Monitoring , Nitrates , China , Cities , Nitrates/analysis , Nitrogen Isotopes/analysis , Particulate Matter/analysis
8.
Environ Pollut ; 266(Pt 3): 115278, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32853872

ABSTRACT

Atmospheric ambient gaseous ammonia (NH3), the most abundant alkaline gas, affects public health and climate change through its key role in the formation of secondary aerosols via reactions with acidic gases. Estimation of the contributions of ammonia sources is very challenging in the urban atmosphere. Stable nitrogen isotope ratio (δ15N) measurements have shown that urban aerosol NH4+ and gaseous NH3 are derived from fossil fuel combustion-related (FF) sources, such as coal combustion, NH3 slip, and vehicle exhaust, and volatilization-related sources, such as agriculture and urban water volatilization. Biomass burning (BB) sources, especially residential biofuel, can produce vast quantities of NH3 and other pollutants and may greatly influence air quality and contribute to increased urban NH3 emissions. In the present study, we continually collected PM2.5 samples at three urban sites in Central China during autumn and analyzed the major water-soluble ions and δ15N values of aerosol NH4+. The concentrations of NH4+ increased as the temperature decreased close to winter, whereas the δ15N values did not show this pattern. According to the Bayesian model after isotope fractionation correction, FF sources contributed to 56.4 ± 17.1%, 46.4 ± 18.2%, and 51.8 ± 14.9% of aerosol NH4+ in Nanchang, Wuhan, and Changsha, respectively, throughout autumn. The contributions from BB sources were 34.5 ± 20.4%, 46.4 ± 21.4%, and 40.4 ± 17.4% for Nanchang, Wuhan, and Changsha, respectively. We also found the fraction of aerosol NH4+ from BB increased in all three cities from September to November 2017, which was likely caused by increased heating demands with the decrease in temperature during the season. Furthermore, BB was responsible for a severe haze event (maximum PM2.5 of 205.69 µg/m3) in Nanchang. These findings suggest government controls to improve air quality should include BB sources in addition to FF sources.


Subject(s)
Air Pollutants/analysis , Ammonium Compounds/analysis , Aerosols/analysis , Bayes Theorem , Biomass , China , Cities , Environmental Monitoring , Particulate Matter/analysis , Seasons
9.
Sci Total Environ ; 704: 135329, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31831235

ABSTRACT

Vertical profiles of PM2.5 (i.e., particulate matter with an aerodynamic diameter of 2.5 µm or less) and meteorological variables (e.g., potential temperature, specific humidity) are crucial to understand formation mechanism including accumulation and dispersion process of PM2.5, as well as interactions between aerosols and the atmospheric boundary layer (ABL). In this study, vertical distributions of PM2.5 are characterized through comprehensive analyses of vertical profiles measured by unmanned aerial vehicle (UAV), Micro Pulse LiDAR, and other surface observational data of a heavy aerosol pollution episode occurring on December 22-25, 2017 in Nanjing, China. Results show that PM2.5 profiles are characterized by a clear three-layer structure with near constant within the mixed layer, a transition layer with a large local gradient in the entrainment zone, and a layer with low concentration and small gradient in the free atmosphere, which shows a large similarity to that of specific humidity. The accumulation of aerosols is found near top of the ABL with the largest increase rate. Vertical distributions of PM2.5 and their evolution are largely constrained by the ABL thermodynamics during daytime, but show much less dependence on the ABL evolution at nighttime. PM2.5 provides an important feedback on the nocturnal boundary layer (NBL) leading to significant modification of vertical distributions of potential temperature and water vapor. Moreover, this study suggests that the current boundary layer parameterization scheme needs refinement with aerosol radiative effect included to further improve the ABL height (ABLH) and air quality predictions.

10.
Sci Total Environ ; 707: 135628, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31784157

ABSTRACT

The effect of dams on dissolved inorganic carbon (DIC) transport and riverine ecosystems is unclear in karst cascade reservoirs. Here, we analyzed water samples from a karst river system with seven cascade reservoirs along the Wujiang River, southwestern China, during one hydrological year. From upstream to downstream, the average concentration of DIC increased from 2.2 to 2.6 mmol/L and its carbon isotope composition (δ13CDIC) decreased from -8.0 to -10‰. Meanwhile, the air temperature (Ta) increased from 20.3 °C to 26.7 °C and 10 °C to 13.7 °C in the warm and cold seasons, respectively. The results suggest that a cascade of dams has a stronger effect on DIC dynamics and retention than a single dam. The good correlation between Ta/HRT (hydraulic retention time) and Δ[DIC] as well as Δ[δ13CDIC] mean that Ta and HRT affected the magnitude of the damming effect by altering changes in concentration of DIC and δ13CDIC in the reservoir compared to the inflowing water. In particular, daily regulated reservoirs with short retention times acted more like river corridors and had a smaller effect on carbon dynamics, so modulating retention time might be used reduce the effect of dams on the riverine ecosystem.

11.
Sci Rep ; 8(1): 14347, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30254224

ABSTRACT

Haplocladium microphyllum moss samples were collected in Nanchang, China. Free amino acid (FAA) concentrations and N isotope compositions (δ15NFAA) in the samples were determined and compared with the bulk N concentrations and δ15Nbulk values. The aim was to determine whether δ15NFAA values in moss (which are very variable) indicate the sources of atmospheric N. The δ15NFAA values among individual FAA varied widely (from -19.3‰ to +16.1‰), possibly because of the different sources of N and isotope fractionation in amino acids metabolic pathways. Total 15N-enrichment for the individual FAAs was equal to total 15N-depletion relative to δ15Nbulk. The concentration-weighted mean δ15N value for total FAAs (TFAA) (δ15NTFAA) was -3.1‰ ± 3.2‰, which was similar to δ15Nbulk (-4.0‰ ± 2.9‰). We concluded that a N isotope balance occurred during amino acid metabolism and that little isotope disparity occurred between the concentration-weighted TFAA and bulk N. We concluded that δ15NTFAA ≈ δ15Nbulk ≈ δ15Nsource. The mean δ15Nalanine (-4.1‰), δ15Nglutamate (-4.2‰), and δ15Nlysine (-4.0‰) were similar to the mean δ15Nbulk, which we attributed to little isotope fractionation occurring during their in situ the metabolic pathways. This suggests that δ15Nalanine, δ15Nglutamate, and δ15Nlysine in moss can be used to indicate the sources of atmospheric N deposition.


Subject(s)
Amino Acids/chemistry , Atmosphere/chemistry , Bryopsida/chemistry , Nitrogen Isotopes/analysis
12.
Sci Rep ; 7(1): 16685, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29192228

ABSTRACT

Aromatic plants show antimicrobial activity due to their essential oils, but their effect on litter decomposition is unclear. In this study, we evaluated the biomass loss and nutrient dynamics in leaf litters of two macrophytes (Miscanthus sacchariflorus and Carex brevicuspis) with and without addition of powdered material of the aromatic plant Polygonum hydropiper or the non-aromatic plant C. brevicuspis. The two powders had similar basic chemical qualities but P. hydropiperi had a higher essential oils concentration. Leaf litters of M. sacchariflorus and C. brevicuspis were incubated with powdered P. hydropiper or C. brevicuspis (500 g m-3, 250 g m-3, and no addition) for 120 days in a mesocosm experiment. Compared with the control (no addition), P. hydropiperi addition decelerated nutrient release and litter decomposition, while C. brevicuspis addition accelerated those processes. The nitrogen concentrations in both leaf litters and the phosphorus concentration in C. brevicuspis leaf litter were increased by addition of both plant powders. The fungal biomass in both leaf litters decreased after P. hydropiperi addition, due to the antifungal activity of its essential oils. These data indicate that the aromatic plant P. hydropiperi inhibits litter decomposition via its essential oils and that such inhibition is not species-specific.


Subject(s)
Plants/chemistry , Biomass , Carbon , Fungi/physiology , Nitrogen , Phytochemicals/chemistry , Plant Leaves/chemistry , Plants/microbiology , Powders , Soil/chemistry
13.
Environ Pollut ; 230: 486-494, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28688925

ABSTRACT

To constrain sources of anthropogenic nitrogen (N) deposition is critical for effective reduction of reactive N emissions and better evaluation of N deposition effects. This study measured δ15N signatures of nitrate (NO3-), ammonium (NH4+) and total dissolved N (TDN) in precipitation at Guiyang, southwestern China and estimated contributions of dominant N sources using a Bayesian isotope mixing model. For NO3-, the contribution of non-fossil N oxides (NOx, mainly from biomass burning (24 ± 12%) and microbial N cycle (26 ± 5%)) equals that of fossil NOx, to which vehicle exhausts (31 ± 19%) contributed more than coal combustion (19 ± 9%). For NH4+, ammonia (NH3) from volatilization sources (mainly animal wastes (22 ± 12%) and fertilizers (22 ± 10%)) contributed less than NH3 from combustion sources (mainly biomass burning (17 ± 8%), vehicle exhausts (19 ± 11%) and coal combustions (19 ± 12%)). Dissolved organic N (DON) accounted for 41% in precipitation TDN deposition during the study period. Precipitation DON had higher δ15N values in cooler months (13.1‰) than in warmer months (-7.0‰), indicating the dominance of primary and secondary ON sources, respectively. These results newly underscored the importance of non-fossil NOx, fossil NH3 and organic N in precipitation N inputs of urban environments.


Subject(s)
Air Pollutants/analysis , Air/analysis , Environmental Monitoring/methods , Nitrogen/analysis , Air/standards , Bayes Theorem , China , Nitrogen Isotopes/analysis , Seasons , Urbanization
14.
Huan Jing Ke Xue ; 38(7): 3054-3060, 2017 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-29964649

ABSTRACT

Field investigation on the content of heavy metals in soils and three types of widely distributing compositae plants(Artemisia lavandulaefolia, Ageratum conyzoides L., Crassocephalum crepidioides) in lead-zinc tailings farmland of Yangshuo, Guangxi Zhuang Autonomous Region was carried out, and the differential centrifugation technique and sequential chemical extraction method were used to study the subcellular distribution and chemical forms of heavy metals in these plants. The results indicated that the soil in the tailings farmland was highly contaminated by Cd, Pb and Zn, and their concentrations were 37.7, 5.7 and 8.9 times higher than their respective values of national standard for soil environment quality(GradeⅡ). The contents of Cd, Pb and Zn in the analyzed plants exceeded the normal ranges. Ageratum conyzoides L. and Crassocephalum crepidioides showed strong capability in tolerance, accumulation and transport of Cd, and they could be used as pioneer plants for Cd-phytoremediation in study area and some related areas. In addition, Cd concentrations in the stem and leave of Crassocephalum crepidioides were 159.6 mg·kg-1 and 219.5 mg·kg-1, respectively, which exceeded the threshold of Cd hyperaccumulator. Thus, Crassocephalum crepidioides can be regarded as a Cd-hyperaccumulator. Majority of total Cd, Pb and Zn were found in soluble fraction and cell wall in the plants, while only a small quantity were distributed in organelles. As for chemical forms distribution, Cd, Zn and Pb predominated NaCl-, HAC-, and HCl-extractable forms both in roots and shoots of the plants. Therefore, cell wall binding, vacuolar compartmentalization and distribution mainly in lower active chemical forms were supposed to be the main mechanisms for tolerance to heavy metals in the study plants. A difference of Cd subcellular distribution and its chemical forms in the three Compositae plants was observed. Compared with the shoot of Artemisia lavandulaefolia, more Cd was located in the vacuolus and cellular soluble parts in Ageratum conyzoides L. and Crassocephalum crepidioides. Moreover, the proportion of active chemical Cd in the shoots was lower than that in the roots. These results showed that the subcellular distribution and chemical forms of Cd were related to the plant species,and also indicated Ageratum conyzoides L. and Crassocephalum crepidioides were likely to possess a higher tolerance and accumulation of Cd.


Subject(s)
Asteraceae/chemistry , Metals, Heavy/analysis , Soil Pollutants/analysis , China , Lead , Mining , Soil , Zinc
15.
Huan Jing Ke Xue ; 37(6): 2376-2382, 2016 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-29964910

ABSTRACT

N and S contents in Cinnamomum camphora leaves, Pinus massoniana Lamb. leaves, epilithic Haplocladium microphyllum(Hedw.) Broth. and rhizosphere soil collected along 3 directions from urban area to rural area at Guiyang city in a total of 296 samples were investigated systematically. The level of atmospheric N deposition and atmospheric SO2 concentrations at each sampling site were calculated according to the quantitative relationship between moss N content and atmospheric N deposition and the quantitative relationship between moss S content and atmospheric SO2 concentration. Leaves N content in Cinnamomum camphora(1.01%-2.37%) and Pinus massoniana Lamb.(0.99%-2.42%)showed significant decrease from urban area with the highest atmospheric nitrogen deposition to suburb, while slightly higher leaves N reemerged at rural area beyond 24 km, suggesting increased N deposition occurred in rural area. Leaves S content in Cinnamomum camphora(0.16%-0.43%) and Pinus massoniana Lamb.(0.18%-0.32%) showed significant decrease from urban area to suburb, the highest level at urban was mainly contributed by the high sulfur released from the production and living of urban areas into the atmosphere, and the lowest level occurred at rural area(30-36km). No significant difference was seen for soil N and S contents. The relationships between the estimated input of atmospheric N deposition and the leaves N content of Cinnamomum camphora and Pinus massoniana Lamb. at the sites investigated were found to be significant linear correlations, and the relationships between the estimated atmospheric SO2 concentration and the leaves S content of Cinnamomum camphora and Pinus massoniana Lamb. were also significant linear correlations(P<0.05). The results indicated that N and S contents in Cinnamomum camphora and Pinus massoniana Lamb. leaves can be used to show the spatial variation of atmospheric N and S deposition.


Subject(s)
Cinnamomum camphora/chemistry , Nitrogen/analysis , Pinus/chemistry , Sulfur/analysis , Atmosphere/chemistry , China , Plant Leaves/chemistry , Spatial Analysis
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-330233

ABSTRACT

The distribution information of Lomatogonium rotatum. was collected by interview investigation and field survey, and 55 related environmental factors were collected, the habitat suitability study was conducted based on geographic information system (GIS) and maximum entropy model. The AUCs of ROC curve were both above 0.99, indicating that the predictive results with the maximum model were highly precise. The results showed that 13 major environmental factors have obvious influence on ecology suitability distributions of L. rotatum, including month average temperature of February et al., the suitable distribution areas are mainly concentrated in the east-central of Inner Mongolia, including Hexigten banner, Duolun county, Zhenglan banner et al., The zoning results basically coincide with the genuine producing areas, and further afford new suitable distribution areas, which can provide reference for L. rotatum's wild nursery and the siting of introduction and cultivation.


Subject(s)
China , Ecosystem , Environment , Gentianaceae , Geographic Information Systems , Rain , Temperature
17.
Huan Jing Ke Xue ; 35(2): 475-80, 2014 Feb.
Article in Chinese | MEDLINE | ID: mdl-24812936

ABSTRACT

Rainwater samples were collected in the summer on "Shiyan 3" during the 2012 South China Sea Sectional Scientific Survey. The concentrations of anion and cation, and pH in precipitation were determined and backward trajectories of air mass were simulated to analyze the chemical characteristics of ions and examine the source of ions. The results indicated that the mean pH value of precipitation was 6.3, with 5.6 of minimal value in summer in South China Sea. The order of anion and cation abundance was Cl(-) > S04(2-) > NO3(-) and Na(+) > Mg(2+) > Ca(2+) > K(+). Cl(-) was the major anion and Na(+) was the major cation, with concentrations of 2 637.5 microeq x L(-1) and 2095.5 microeq x L(-1), respectively, showing that they were the characteristics of marine atmospheric precipitation. There was a good linear relationship between each pair of 7 ions, with correlation coefficient above 0.9, suggesting that they may have a common source. However, the correlation coefficients were lower between NO3(-) and other ions than the others, suggesting that NO3(-) had more complex sources. The concentrations of Ca(2+) and K(+) in precipitation may be related to coral environment in South China Sea. The backward trajectories in 6 stations showed that the air mass was from south and southwest of South China Sea, without passing through above the continent. These results suggested that precipitation affected by human ion source can be ignored in summer in South China Sea.


Subject(s)
Environmental Monitoring , Rain/chemistry , Anions/analysis , Cations/analysis , China , Hydrogen-Ion Concentration , Oceans and Seas , Seasons
18.
Huan Jing Ke Xue ; 34(10): 3777-81, 2013 Oct.
Article in Chinese | MEDLINE | ID: mdl-24364292

ABSTRACT

This study analyzed the inorganic sulfur (SSO4) and total sulfur (ST) content as well as the isotopic signatures (delta34SSO4 and 834ST) in leaves of Pinus massoniana lamb. collected from Guizhou and Yunnan areas. The results indicated that the SSO4 and ST content in leaves at Guiyang areas was significantly higher than that at Yunnan areas, and the content of inorganic sulfur in the leaves was found to be directly related to the concentration of ambient sulfur dioxide, but no correlation was seen between the ST content and the ambient sulfur dioxide, showing the SSO4 content in leaves was more reliable to reflect the ambient sulfur input. The average value of delta34SSO4 in leaves at Guiyang areas ( -7. 22%o) was significantly lower than that at Yunnan areas(3. 85 per thousand) , which was related to the fact that the sulfur isotopic composition of coal at Guiyang areas is lower than that at Yunnan areas. The SSO4 and ST content in leaves around Kunming steel and Qujing power plant was inversely proportional to the distance from the factories, while around Kunming steel plant the value of 83SSO4 in leaves became more negative when the distance became larger while around Qujing power plant the value of 834Sso4 became more positive when the distance became larger, indicating that the SSO4 content and delta34SSO4, in leaves around Kunming steel and Qujing power plant were controlled by coal sources of atmospheric sulfur deposition.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Pinus/chemistry , Plant Leaves/chemistry , Sulfur Isotopes/analysis , China , Coal , Power Plants
19.
Huan Jing Ke Xue ; 34(10): 3782-7, 2013 Oct.
Article in Chinese | MEDLINE | ID: mdl-24364293

ABSTRACT

In order to study the influence of atmospheric sulfur on soil sulfur, the forest surface soil samples and moss samples were collected in north areas of Jiangxi province. Contents and isotopes of sulfur in different forms (total sulfur, water-soluble sulfur, absorbed sulfur and organic sulfur) were determined. The average sulfur content of mosses was 0. 34% +/- 0. 20%. All of the delta34S values except at Fengcheng (-3. 31 per thousand) were positive, the average was 5.64 per thousand +/- 2. 23 per thousand. The average contents of soil total sulfur were between 189.0 mg.kg-1 and 793.5 mg.kg-1. The organic sulfur was the main sulfur form in surface soils and the contents of water-soluble sulfur were the lowest. The delta34S values of total sulfur were in the range of 4. 45 per thousand +/-10. 28 per thousand. The highest soil delta34S values were determined for organic sulfur and the delta34S values of water-soluble and absorbed sulfur were similar. The contents of soil total sulfur were much lower than those of the mosses. Except for organic sulfur (R = 0. 50, P >0. 05) , the delta34S values of total sulfur, water-soluble sulfur and absorbed sulfur were all significantly correlated with those of moss sulfur (R >0.7, P <0. 01). These results indicated that atmospheric sulfur directly affected the total sulfur, water-soluble sulfur and absorbed sulfur, but not the organic sulfur.


Subject(s)
Bryophyta/chemistry , Soil/chemistry , Sulfur Isotopes/analysis , China , Water/chemistry
20.
Huan Jing Ke Xue ; 33(4): 1080-5, 2012 Apr.
Article in Chinese | MEDLINE | ID: mdl-22720549

ABSTRACT

Leaves of Platanus orientalis were collected since Mar. 2009 till Apr. 2010, in an urban area at Guiyang. After mass of experiments and analysis, we carried out constructing the temporal variation of foliar N% and delta15 N: both higher in Spring/Summer, lower in Autumn, no data of Winter because of leaf abscission. Results showed that foliar N% varied from 1.48% to 5.27%, with an annual average of 3.36%, while the average concentration of total N in rhizospheric soil was 0.29%. The foliar N% rose and fell relative to DIN in rainwater (range from 0.57 mg x L(-1) to 6.74 mg x L(-1)), indicating that the N% content in foliar tissue of plant was approximately proportional to atmospheric N inputs. The range of foliar delta15N were from 4.48 per thousand to 8.39 per thousand, with the average of 6.33 per thousand, much higher than the delta15N-NH4+ of rain water (-19.76 per thousand(-) -10.41 per thousand) and delta15TN of rhizospheric soil (3.19 per thousand +/- 1.04 per thousand). Besides, a good uniform correlation between foliar delta15N and delta15N-NH4+ of rain water were found. As synthesis of two main N sources, the more positive delta15N values of Platanus orientalis can be explained by isotopic fractionation during N uptake and basipetal translocation. These responses of both foliar N% and delta15N to atmospheric nitrogen deposition, revealed the potential value in using vascular leaves as bio-monitors for assessment of N deposition, furthermore, for prevention and control of air pollution in urban ecosystem.


Subject(s)
Air Pollutants/analysis , Magnoliopsida/chemistry , Nitrogen/analysis , Plant Leaves/chemistry , Rain , Atmosphere/analysis , China , Cities , Environmental Monitoring , Nitrogen Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...