Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.598
Filter
1.
BMC Med Imaging ; 24(1): 167, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969972

ABSTRACT

PURPOSE: To develop and validate a multiparametric magnetic resonance imaging (mpMRI)-based radiomics model for predicting lymph-vascular space invasion (LVSI) of cervical cancer (CC). METHODS: The data of 177 CC patients were retrospectively collected and randomly divided into the training cohort (n=123) and testing cohort (n = 54). All patients received preoperative MRI. Feature selection and radiomics model construction were performed using max-relevance and min-redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) on the training cohort. The models were established based on the extracted features. The optimal model was selected and combined with clinical independent risk factors to establish the radiomics fusion model and the nomogram. The diagnostic performance of the model was assessed by the area under the curve. RESULTS: Feature selection extracted the thirteen most important features for model construction. These radiomics features and one clinical characteristic were selected showed favorable discrimination between LVSI and non-LVSI groups. The AUCs of the radiomics nomogram and the mpMRI radiomics model were 0.838 and 0.835 in the training cohort, and 0.837 and 0.817 in the testing cohort. CONCLUSION: The nomogram model based on mpMRI radiomics has high diagnostic performance for preoperative prediction of LVSI in patients with CC.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Neoplasm Invasiveness , Nomograms , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Female , Multiparametric Magnetic Resonance Imaging/methods , Middle Aged , Retrospective Studies , Neoplasm Invasiveness/diagnostic imaging , Adult , Lymphatic Metastasis/diagnostic imaging , Aged , Radiomics
2.
JMIR Med Inform ; 12: e49978, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38904478

ABSTRACT

Background: The use of chronic disease information systems in hospitals and communities plays a significant role in disease prevention, control, and monitoring. However, there are several limitations to these systems, including that the platforms are generally isolated, the patient health information and medical resources are not effectively integrated, and the "Internet Plus Healthcare" technology model is not implemented throughout the patient consultation process. Objective: The aim of this study was to evaluate the efficiency of the application of a hospital case management information system in a general hospital in the context of chronic respiratory diseases as a model case. Methods: A chronic disease management information system was developed for use in general hospitals based on internet technology, a chronic disease case management model, and an overall quality management model. Using this system, the case managers provided sophisticated inpatient, outpatient, and home medical services for patients with chronic respiratory diseases. Chronic respiratory disease case management quality indicators (number of managed cases, number of patients accepting routine follow-up services, follow-up visit rate, pulmonary function test rate, admission rate for acute exacerbations, chronic respiratory diseases knowledge awareness rate, and patient satisfaction) were evaluated before (2019-2020) and after (2021-2022) implementation of the chronic disease management information system. Results: Before implementation of the chronic disease management information system, 1808 cases were managed in the general hospital, and an average of 603 (SD 137) people were provided with routine follow-up services. After use of the information system, 5868 cases were managed and 2056 (SD 211) patients were routinely followed-up, representing a significant increase of 3.2 and 3.4 times the respective values before use (U=342.779; P<.001). With respect to the quality of case management, compared to the indicators measured before use, the achievement rate of follow-up examination increased by 50.2%, the achievement rate of the pulmonary function test increased by 26.2%, the awareness rate of chronic respiratory disease knowledge increased by 20.1%, the retention rate increased by 16.3%, and the patient satisfaction rate increased by 9.6% (all P<.001), while the admission rate of acute exacerbation decreased by 42.4% (P<.001) after use of the chronic disease management information system. Conclusions: Use of a chronic disease management information system improves the quality of chronic respiratory disease case management and reduces the admission rate of patients owing to acute exacerbations of their diseases.

3.
Int J Biol Macromol ; 274(Pt 1): 133177, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885855

ABSTRACT

Under nitrogen deficient conditions, the Aurantiochytrium limacinum strain BL10 greatly increases the production of docosahexaenoic acid (DHA) and n-6 docosapentaenoic acid. Researchers have yet to elucidate the mechanism by which BL10 promotes the activity of polyunsaturated fatty acid synthase (Pfa), which plays a key role in the synthesis of polyunsaturated fatty acid (PUFA). Analysis in the current study revealed that in nitrogen-depleted environments, BL10 boosts the transcription and synthesis of proteins by facilitating the expression of pfa genes via transcriptional regulation. It was also determined that BL10 adjusts the lengths of the 5'- and 3'-untranslated regions (suggesting post-transcriptional regulation) and modifies the ratio of two Pfa1 isoforms to favor PUFA production via post-translational regulation (ubiquitination). These findings clarify the exceptional DHA production of BL10 and provide additional insights into the regulatory mechanisms of PUFA biosynthesis in Aurantiochytrium.

4.
ACS Appl Mater Interfaces ; 16(26): 33021-33037, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888460

ABSTRACT

Hypoxia can lead to liver fibrosis and severely limits the efficacy of photodynamic therapy (PDT). Herein, carbon nitride (CN)-based hybrid nanoparticles (NPs) VPSGCNs@TSI for light-driven water splitting were utilized to solve this problem. CNs were doped with selenide glucose (Se-glu) to enhance their red/NIR region absorption. Then, vitamin A-poly(ethylene glycol) (VA-PEG) fragments and aggregation-induced emission (AIE) photosensitizers TSI were introduced into Se-glu-doped CN NPs (VPSGCNs) to construct VPSGCNs@TSI NPs. The introduction of VA-PEG fragments enhanced the targeting of the NPs to activated hepatic stellate cells (HSCs) and reduced their toxicity to ordinary liver cells. VPSGCN units could trigger water splitting to generate O2 under 660 nm laser irradiation, improve the hypoxic environment of the fibrosis site, downregulate HIF-1α expression, and activate HSC ferroptosis via the HIF-1α/SLC7A11 pathway. In addition, generated O2 could also increase the reactive oxygen species (ROS) production of TSI units in a hypoxic environment, thereby completely reversing hypoxia-triggered PDT resistance to enhance the PDT effect. The combination of water-splitting materials and photodynamic materials showed a 1 + 1 > 2 effect in increasing oxygen levels in liver fibrosis, promoting ferroptosis of activated HSCs and reversing PDT resistance caused by hypoxia.


Subject(s)
Ferroptosis , Hepatic Stellate Cells , Liver Cirrhosis , Nanoparticles , Photochemotherapy , Nanoparticles/chemistry , Animals , Ferroptosis/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Mice , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Nitriles/chemistry , Nitriles/pharmacology , Humans , Hypoxia/drug therapy , Hypoxia/metabolism , Reactive Oxygen Species/metabolism
5.
Huan Jing Ke Xue ; 45(6): 3756-3764, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897795

ABSTRACT

To investigate the concentration characteristics and sources of metal elements in PM2.5 during winter heavy pollution in the southern Sichuan urban agglomeration (Zigong, Luzhou, Neijiang, and Yibin), the metal elements in PM2.5 were measured using membrane sampling methods from December 30, 2018 to January 14, 2019, and the enrichment factor method (EF) and positive matrix factorization(PMF) were applied to investigate the sources of metal elements. The metal element observation data of Zigong in the same period of 2015 were also used to investigate the changes in metal element pollution and enrichment in Zigong in the middle and end of the implementation of China's Air Pollution Prevention and Control Action Plan. The main findings were as follows:① The concentrations and percentages of metal elements in particulate matter in different cities did not differ significantly. The elements with higher concentrations in the four cities showed similarities, with Al, Sb, and Fe at the top. From the comparison of different observation periods in Zigong, the concentrations of all elements except Tl changed. ② The results of the enrichment factor calculation showed that the enrichment of the elements Cr (Zigong and Yibin), Ni, Cu, As, Se, Ag, Cd, Sb, Tl, and Pb in the urban agglomeration was high. The comparison of the enrichment levels of elements in Zigong for different observation periods showed that the enrichment levels of all elements, except Cu, tended to decrease in the winter observation period of 2018. ③ The results of PMF source analysis showed that the metal elements in each city mainly originated from dust sources, coal-fired sources, industrial sources, and traffic sources, whereas there was a mixed contribution among the sources. The contribution of the main sources differed among cities, in which Zigong was dominated by traffic dust sources and mixed sources, Luzhou was dominated by industrial sources, Neijiang had a similar contribution from different sources, and Yibin was dominated by traffic sources.

6.
Acta Pharmacol Sin ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902501

ABSTRACT

The impairment of blood-brain barrier (BBB) integrity is the pathological basis of hemorrhage transformation and vasogenic edema following thrombolysis and endovascular therapy. There is no approved drug in the clinic to reduce BBB damage after acute ischemic stroke (AIS). Glial growth factor 2 (GGF2), a recombinant version of neuregulin-1ß that can stimulates glial cell proliferation and differentiation, has been shown to alleviate free radical release from activated microglial cells. We previously found that activated microglia and proinflammatory factors could disrupt BBB after AIS. In this study we investigated the effects of GGF2 on AIS-induced BBB damage as well as the underlying mechanisms. Mouse middle cerebral artery occlusion model was established: mice received a 90-min ischemia and 22.5 h reperfusion (I/R), and were treated with GGF2 (2.5, 12.5, 50 ng/kg, i.v.) before the reperfusion. We showed that GGF2 treatment dose-dependently decreased I/R-induced BBB damage detected by Evans blue (EB) and immunoglobulin G (IgG) leakage, and tight junction protein occludin degradation. In addition, we found that GGF2 dose-dependently reversed AIS-induced upregulation of vesicular transcytosis increase, caveolin-1 (Cav-1) as well as downregulation of major facilitator superfamily domain containing 2a (Mfsd2a). Moreover, GGF2 decreased I/R-induced upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that played an important role in BBB damage after AIS. In addition, GGF2 significantly alleviated I/R-induced reduction of YAP and TAZ, microglial cell activation and upregulation of inflammatory factors. Together, these results demonstrate that GGF2 treatment alleviates the I/R-compromised integrity of BBB by inhibiting Mfsd2a/Cav-1-mediated transcellular permeability and Pdlim5/YAP/TAZ-mediated paracellular permeability.

7.
Heliyon ; 10(11): e32089, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882368

ABSTRACT

Introduction: Body mass index (BMI) can predict mortality in critically ill patients. Moreover, mortality is related to increased bilirubin levels. Thus, herein, we aimed to investigate the effect of bilirubin levels on the usefulness of BMI in predicting mortality in critically ill patients. Methods: Data were extracted from the Medical Information Mart for Intensive Care (MIMIC IV) database. Patients were divided into two groups according to their total bilirubin levels within 24 h. Cox proportional hazard regression models were applied to obtain adjusted hazard ratios and 95 % confidence intervals for the correlation between BMI categories and hospital mortality. The dose-response relationship was flexibly modeled using a restricted cubic spline (RCS) with three knots. Results: Of the 14376 patients included, 3.4 % were underweight, 29.3 % were of normal body weight, 32.2 % were overweight, and 35.1 % were obese. For patients with total bilirubin levels <2 mg/dL, hospital mortality was significantly lower in patients with obesity than in normal body weight patients (p < 0.05). However, the opposite results were observed for patients with total bilirubin levels ≥2 mg/dL. The Cox proportional hazard regression models suggested that the risk of death was lower in patients with overweightness and obesity than in normal body weight patients when the total bilirubin levels were <2 mg/dL, but not in the other case (total bilirubin levels ≥2 mg/dL). RCS analyses showed that, for patients with total bilirubin levels <2 mg/dL, the risk of death gradually decreased with increasing BMI. Conversely, for patients with total bilirubin levels ≥2 mg/dL, this risk did not decrease with increasing BMI until reaching obesity, after which it increased rapidly. Conclusion: BMI predicted the risk of death differently in critically ill patients with different bilirubin levels.

8.
Int J Nanomedicine ; 19: 5739-5761, 2024.
Article in English | MEDLINE | ID: mdl-38882545

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have the capability to induce specific protein degradation. While playing a revolutionary role in effectively degrading the protein of interest (POI), PROTACs encounter certain limitations that impede their clinical translation. These limitations encompass off-target effects, inadequate cell membrane permeability, and the hook effect. The advent of nanotechnology presents a promising avenue to surmount the challenges associated with conventional PROTACs. The utilization of nano-proteolysis targeting chimeras (nano-PROTACs) holds the potential to enhance specific tissue accumulation, augment membrane permeability, and enable controlled release. Consequently, this approach has the capacity to significantly enhance the controllable degradation of target proteins. Additionally, they enable a synergistic effect by combining with other therapeutic strategies. This review comprehensively summarizes the structural basis, advantages, and limitations of PROTACs. Furthermore, it highlights the latest advancements in nanosystems engineered for delivering PROTACs, as well as the development of nano-sized PROTACs employing nanocarriers as linkers. Moreover, it delves into the underlying principles of nanotechnology tailored specifically for PROTACs, alongside the current prospects of clinical research. In conclusion, the integration of nanotechnology into PROTACs harbors vast potential in enhancing the anti-tumor treatment response and expediting clinical translation.


Subject(s)
Neoplasms , Proteolysis , Humans , Neoplasms/drug therapy , Proteolysis/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Nanoparticles/chemistry , Nanomedicine/methods , Nanotechnology/methods , Drug Delivery Systems/methods , Drug Carriers/chemistry
9.
Mol Neurobiol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850348

ABSTRACT

Dysbiosis of the gut microbiota is closely associated with neurodegenerative diseases, including Huntington's disease (HD). Gut microbiome-derived metabolites are key factors in host-microbiome interactions. This study aimed to investigate the crucial gut microbiome and metabolites in HD and their correlations. Fecal and serum samples from 11 to 26 patients with HD, respectively, and 16 and 23 healthy controls, respectively, were collected. The fecal samples were used for shotgun metagenomics while the serum samples for metabolomics analysis. Integrated analysis of the metagenomics and metabolomics data was also conducted. Firmicutes, Bacteroidota, Proteobacteria, Uroviricota, Actinobacteria, and Verrucomicrobia were the dominant phyla. At the genus level, the presence of Bacteroides, Faecalibacterium, Parabacteroides, Alistipes, Dialister, and Christensenella was higher in HD patients, while the abundance of Lachnospira, Roseburia, Clostridium, Ruminococcus, Blautia, Butyricicoccus, Agathobaculum, Phocaeicola, Coprococcus, and Fusicatenibacter decreased. A total of 244 differential metabolites were identified and found to be enriched in the glycerophospholipid, nucleotide, biotin, galactose, and alpha-linolenic acid metabolic pathways. The AUC value from the integrated analysis (1) was higher than that from the analysis of the gut microbiota (0.8632). No significant differences were found in the ACE, Simpson, Shannon, Sobs, and Chao indexes between HD patients and controls. Our study determined crucial functional gut microbiota and potential biomarkers associated with HD pathogenesis, providing new insights into the role of the gut microbiota-brain axis in HD occurrence and development.

10.
Acta Diabetol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833006

ABSTRACT

AIMS: We aimed to evaluate the impact of C-reactive protein (CRP) gene polymorphism, additional gene-gene interaction, and haplotypes on susceptibility to type 2 diabetes mellitus (T2DM). METHODS: SNPstats online software ( https://www.snpstats.net/start.htm ) was employed to evaluate the association between CRP gene and T2DM risk. High-order interactions among SNPs was tested using generalized multifactor dimensionality reduction, and the testing balanced accuracy, training balanced accuracy and cross-validation consistency were calculated. The SHEsisPlus ( http://shesisplus.bio-x.cn/SHEsis.html ) online software was used for haplotype analysis. RESULTS: A total of 730 T2DM patients and 765 controls were enrolled. The T allele of rs1205 is associated with increased susceptibility to T2DM, OR (95% CI) were 1.51 (1.13-2.01), 1.44 (1.10-1.89) and 1.25 (1.01-1.54) for codominant, dominant and over-dominant models, respectively. We also found that minor allele of rs2794521 is associated with decreased susceptibility to T2DM under codominant and recessive models, OR (95%CI) were 0.38 (0.18-0.79) and 0.37 (0.16-0.80) for codominant and recessive models, respectively. No significant gene-gene interaction existed among CRP gene SNPs, all interaction p- values were more than 0.05. Haplotype analyses suggested the CGCA haplotype containing rs1205-C, rs1130864-G, rs2794521- C and rs3093059- A allele was associated with decreased risk of T2DM, OR (95% CI) = 0.83 (0.68-0.98), P = 0.047. CONCLUSIONS: Minor allele of rs1205 was associated with increased T2DM risk. Minor allele of rs2794521 and the CGCA haplotype were associated with decreased T2DM risk.

12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 883-889, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926984

ABSTRACT

OBJECTIVE: To investigate the effects of mild SARS-CoV-2 infection on hematological parameters of adult blood donors and the suitability of apheresis platelet donation, the changes of the hematological parameters in blood donors with mild infection of the SARS-CoV-2 Omicron variant strain were evaluated. METHODS: Seventy-two blood donors with mild COVID-19 symptoms who donated consecutive apheresis platelets for 3 times from December 2022 to January 2023, 42 cases among which were included in the infection-positive group, and 30 cases in the suspected infection group. Forty-two donors un-vaccinated against SARS-CoV-2, un-infected, and donated three consecutive apheresis platelets from October to November 2022 were included in the control group. The changes of blood routine testing in the positive group and the suspected infection group were retrospectively compared before (Time1) and after (Time2 and Time3) the onset of symptoms, three consecutive times (Time1, Time2, Time3) in the control group by repeated measures analysis of variance. The Bayesian discriminant method was used to establish a discriminant equation to determine whether the recent infection of SARS-CoV-2 occurred or not. RESULTS: Simple effect of the number times of tests in the positive and suspected infection groups was significant( Finfection-positive group=6.98, P < 0.001, partial η2=0.79, Fsuspected infection group=4.31, P < 0.001, partial η2=0.70). The positive group and the suspected infection group had lower RBC, HCT, and HGB, and higher PLT and PCT at Time2 compared to Time1 and Time3(P < 0.05). The positive group and the suspected infection group showes RDW-CV and RDW-SD at Time3 higher than Time1 and Time2 (P < 0.001). The simple effect of the number times of tests in the control group was not significant ( F=0.96, P =0.55, partial η2=0.34). The difference of the whole blood count parameters in the control group for three times was not statistically significant (P >0.05). We established a discriminant equation to determine whether the recent infection of SARS-CoV-2 occurred or not. The equation had an eigenvalue of 0.22, a canonical correlation of 0.43 (χ2=27.81, P < 0.001), and an analysis accuracy of 72.9%. CONCLUSION: The hematological indicators of RBC, HCT, HGB, PLT, PCT, RDW-CV and RDW-SD in blood donors who had infected with mild COVID-19 showed dynamic changes. The discriminant equation for whether they are infected recently with COVID-19 has a high accuracy rate.


Subject(s)
Blood Donors , COVID-19 , Plateletpheresis , SARS-CoV-2 , Humans , COVID-19/blood , Blood Platelets , Retrospective Studies , Platelet Count , Adult , Male
14.
Inorg Chem ; 63(27): 12469-12474, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38912662

ABSTRACT

Two Mn(II)-bridged Silverton-type {UMo12O42}-based polyoxomolybdates with different three-dimensional structures, Na6(H2O)12[Mn(UMo12O42)] (NaMn) and (NH4)2[K2Na6(µ4-O)2(H2O)1.2Mn(UMo12O42)]·4.6H2O (KMn), were hydrothermally synthesized and further characterized, demonstrating a feasible strategy for the assembly of Silverton-type polyoxomolybdates. Additionally, NaMn is demonstrated to be a good heterogeneous catalyst in the condensation cyclization reaction of hydrazines and 1,3-diketones, and a range of valuable pyrazoles were produced in up to 99% yield.

15.
Curr Microbiol ; 81(6): 164, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710854

ABSTRACT

Edible bird's nest (EBN), a most highly priced and valuable foodstuff, contains high percentage of proteins and carbohydrates. However, proteins adhering to these carbohydrates make the EBN hard and tough, which need to be boiled as the bird's nest soup to make the Chinese cuisine. To overcome the hard and tough texture of EBN and improve the digestion degrees, the present study screened and identified a probiotic strain Bacillus amyloliquefaciens YZW02 from 5-year stored EBN sample completely solubilizing EBN for the first time. The 24-h B. amyloliquefaciens fermented EBN contained 20.30-21.48 mg/mL of the soluble protein contents with a recovery rate of 98-100%, DPPH radical scavenging rate of 84.76% and ABTS radical scavenging capacity of 41.05%. The mixed fermentation of B. amyloliquefaciens YZW02 and Bacillus natto BN1 were further applied to improve the low-MW peptide percentages and antioxidant activities. The mixed-fermentation of B. natto BN1 with 4-h cultured B. amyloliquefaciens YZW02 had the lowest percentage (82.23%) of >12-kDa proteins/peptides and highest percentages of 3-12 kDa, 1-3 kDa and 0.1-1 kDa peptides of 8.6% ± 0.08, 7.57% ± 0.09, 1.77% ± 0.05 and 0.73% ± 0.05, with the highest DPPH, ABTS and •OH scavenging capacity of 90.23%, 46.45% and 49.12%, respectively. These findings would provide an efficient strategy for improving the solubility and antioxidant activities of EBNs.


Subject(s)
Antioxidants , Bacillus amyloliquefaciens , Birds , Fermentation , Probiotics , Solubility , Bacillus amyloliquefaciens/chemistry , Bacillus amyloliquefaciens/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Animals , Probiotics/chemistry , Probiotics/metabolism , Birds/microbiology
16.
Front Pharmacol ; 15: 1389271, 2024.
Article in English | MEDLINE | ID: mdl-38783953

ABSTRACT

Aims: The population pharmacokinetic (PPK) model-based machine learning (ML) approach offers a novel perspective on individual concentration prediction. This study aimed to establish a PPK-based ML model for predicting tacrolimus (TAC) concentrations in Chinese renal transplant recipients. Methods: Conventional TAC monitoring data from 127 Chinese renal transplant patients were divided into training (80%) and testing (20%) datasets. A PPK model was developed using the training group data. ML models were then established based on individual pharmacokinetic data derived from the PPK basic model. The prediction performances of the PPK-based ML model and Bayesian forecasting approach were compared using data from the test group. Results: The final PPK model, incorporating hematocrit and CYP3A5 genotypes as covariates, was successfully established. Individual predictions of TAC using the PPK basic model, postoperative date, CYP3A5 genotype, and hematocrit showed improved rankings in ML model construction. XGBoost, based on the TAC PPK, exhibited the best prediction performance. Conclusion: The PPK-based machine learning approach emerges as a superior option for predicting TAC concentrations in Chinese renal transplant recipients.

17.
Biomimetics (Basel) ; 9(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786482

ABSTRACT

To inhibit the deep conversion of partial oxidation products (POX-products) in C-H bonds' functionalization utilizing O2, 5-(4-(chloromethyl)phenyl)-10,15,20-tris(perfluorophenyl)porphyrin cobalt(II) and 5-(4-(chloromethyl)phenyl)-10,15,20-tris(perfluorophenyl)porphyrin copper(II) were immobilized on the surface of hybrid silica to conduct relay catalysis on the surface. Fluorocarbons with low polarity and heterogeneous catalysis were devised to decrease the convenient accessibility of polar POX-products to catalytic centers on the lower polar surface. Relay catalysis between Co and Cu was designed to utilize the oxidation intermediates alkyl hydroperoxides to transform more C-H bonds. Systematic characterizations were conducted to investigate the structure of catalytic materials and confirm their successful syntheses. Applied to C-H bond oxidation, not only deep conversion of POX-products was inhibited but also substrate conversion and POX-product selectivity were improved simultaneously. For cyclohexane oxidation, conversion was improved from 3.87% to 5.27% with selectivity from 84.8% to 92.3%, which was mainly attributed to the relay catalysis on the surface excluding products. The effects of the catalytic materials, product exclusion, relay catalysis, kinetic study, substrate scope, and reaction mechanism were also investigated. To our knowledge, a practical and novel strategy was presented to inhibit the deep conversion of POX-products and to achieve efficient and accurate oxidative functionalization of hydrocarbons. Also, a valuable protocol was provided to avoid over-reaction in other chemical transformations requiring high selectivity.

18.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791423

ABSTRACT

The relationship between psychological stress, altered skin immunity, and autophagy-related genes (ATGs) is currently unclear. Psoriasis is a chronic skin inflammation of unclear etiology that is characterized by persistence and recurrence. Immune dysregulation and emotional disturbances are recognized as significant risk factors. Emerging clinical evidence suggests a possible connection between anxiety disorders, heightened immune system activation, and altered skin immunity, offering a fresh perspective on the initiation of psoriasis. The aim of this study was to explore the potential shared biological mechanisms underlying the comorbidity of psoriasis and anxiety disorders. Psoriasis and anxiety disorders data were obtained from the GEO database. A list of 3254 ATGs was obtained from the public database. Differentially expressed genes (DEGs) were obtained by taking the intersection of DEGs between psoriasis and anxiety disorder samples and the list of ATGs. Five machine learning algorithms used screening hub genes. The ROC curve was performed to evaluate diagnostic performance. Then, GSEA, immune infiltration analysis, and network analysis were carried out. The Seurat and Monocle algorithms were used to depict T-cell evolution. Cellchat was used to infer the signaling pathway between keratinocytes and immune cells. Four key hub genes were identified as diagnostic genes related to psoriasis autophagy. Enrichment analysis showed that these genes are indeed related to T cells, autophagy, and immune regulation, and have good diagnostic efficacy validated. Using single-cell RNA sequencing analysis, we expanded our understanding of key cellular participants, including inflammatory keratinocytes and their interactions with immune cells. We found that the CASP7 gene is involved in the T-cell development process, and correlated with γδ T cells, warranting further investigation. We found that anxiety disorders are related to increased autophagy regulation, immune dysregulation, and inflammatory response, and are reflected in the onset and exacerbation of skin inflammation. The hub gene is involved in the process of immune signaling and immune regulation. The CASP7 gene, which is related with the development and differentiation of T cells, deserves further study. Potential biomarkers between psoriasis and anxiety disorders were identified, which are expected to aid in the prediction of disease diagnosis and the development of personalized treatments.


Subject(s)
Anxiety Disorders , Autophagy , Computational Biology , Machine Learning , Psoriasis , Single-Cell Analysis , Stress, Psychological , Psoriasis/genetics , Psoriasis/immunology , Humans , Autophagy/genetics , Computational Biology/methods , Stress, Psychological/genetics , Stress, Psychological/immunology , Anxiety Disorders/genetics , Gene Regulatory Networks , Gene Expression Profiling , Skin/pathology , Skin/metabolism , Skin/immunology
19.
Phytochemistry ; 223: 114131, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705264

ABSTRACT

Four undescribed homoisoflavanoids (1-4), one homoflavonoid (5), ten dibenzoxocin derivatives (6a-10a and 6b-10b), one dibenzoxocin-derived phenolic compound (11), one diterpenoid (13), three aliphatic dicarboxylic acid derivatives (14-16), together with the known diterpenoid 12-O-ethylneocaesalpin B (12) were obtained from the branches and leaves of Hultholia mimosoides. Their structures were elucidated by extensive spectroscopic techniques. Notably, each of the dibenzoxocins 6-10 existed as a pair of interconvertible atropisomers and the conformation for these compounds was clarified by NMR and ECD analyses. Protosappanin F (11) was a previously undescribed dibenzoxocin-derived compound in which one of the benzene rings was hydrogenated to a polyoxygenated cyclohexane ring and an ether linkage was established between C-6 and C-12a. The isolated polyphenols were tested for induction of quinone reductase and compounds 3 and 8 showed potent QR-inducing activity in Hepa-1c1c7 cells.


Subject(s)
Antioxidants , Plant Leaves , Plant Leaves/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Molecular Structure , Salicaceae/chemistry , Plant Stems/chemistry
20.
World J Stem Cells ; 16(5): 525-537, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38817335

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality rates. The use of pluripotent stem cells holds great promise for the treatment of AKI. Urine-derived stem cells (USCs) are a novel and versatile cell source in cell-based therapy and regenerative medicine that provide advantages of a noninvasive, simple, and low-cost approach and are induced with high multidifferentiation potential. Whether these cells could serve as a potential stem cell source for the treatment of AKI has not been determined. AIM: To investigate whether USCs can serve as a potential stem cell source to improve renal function and histological structure after experimental AKI. METHODS: Stem cell markers with multidifferentiation potential were isolated from human amniotic fluid. AKI severe combined immune deficiency (SCID) mice models were induced by means of an intramuscular injection with glycerol. USCs isolated from human-voided urine were administered via tail veins. The functional changes in the kidney were assessed by the levels of blood urea nitrogen and serum creatinine. The histologic changes were evaluated by hematoxylin and eosin staining and transferase dUTP nick-end labeling staining. Meanwhile, we compared the regenerative potential of USCs with bone marrow-derived mesenchymal stem cells (MSCs). RESULTS: Treatment with USCs significantly alleviated histological destruction and functional decline. The renal function was rapidly restored after intravenous injection of 5 × 105 human USCs into SCID mice with glycerol-induced AKI compared with injection of saline. Results from secretion assays conducted in vitro demonstrated that both stem cell varieties released a wide array of cytokines and growth factors. This suggests that a mixture of various mediators closely interacts with their biochemical functions. Two types of stem cells showed enhanced tubular cell proliferation and decreased tubular cell apoptosis, although USC treatment was not more effective than MSC treatment. We found that USC therapy significantly improved renal function and histological damage, inhibited inflammation and apoptosis processes in the kidney, and promoted tubular epithelial proliferation. CONCLUSION: Our study demonstrated the potential of USCs for the treatment of AKI, representing a new clinical therapeutic strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...