Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-1011010

ABSTRACT

Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.


Subject(s)
Humans , Drugs, Chinese Herbal/pharmacology , Liver Diseases/drug therapy , Antioxidants , Polysaccharides/therapeutic use , Medicine, Chinese Traditional
2.
J Tradit Chin Med ; 42(3): 379-388, 2022 06.
Article in English | MEDLINE | ID: mdl-35610007

ABSTRACT

OBJECTIVE: To explore whether the paraventricular nucleus (PVN) participates in regulation of the anti-myocardial ischemia-reperfusion injury (MIRI) effect of electroacupuncture (EA) and whether this is achieved through the PVN-interposed nucleus (IN) neural pathway. METHODS: The modeling method of myocardial ischemia reperfusion injury was achieved by ligating the left anterior descending coronary artery in Sprague-Dawley rats. We used the Powerlab multi-channel physiological recorder system to record electro-cardiograms and analyze the changes in ST segment displacement; 2,3,5-Triphenyltetrazolium chloride staining was used to observe the percentage of myocardial infarction areas. Detecting cardiac troponin I (cTnI), lactate dehydrogenase (LDH) in serum was done with an enzyme-linked immunosorbent assay kit. Morphological changes in the myocardium were detected in each group with hematoxylin-eosin staining of paraffin sections. Detection of c-fos protein expression in the PVN of the hypothalamus was done with the immune-ofluorescence method. The Plexon multi-channel acquisition system recorded PVN neuron discharges and local field potentials in each group of rats. Offline Sorter software was used for cluster analysis. Neuro Explorer software was used to perform autocorrelation, raster and frequency characteristics and spectral energy analysis of neuron signals in each group. RESULTS: Compared with the MIRI model group, the areas of myocardial infarction in the EA group were significantly reduced; the expression of cTnI, LDH in serum was decreased significantly. The firing frequency of pyramidal cells in the PVN was significantly increased and the spectrum energy map showed energy was reduced, c-fos expression in PVN was reduced, this indicated that neuronal activity in the PVN participates in the effect of EA improving myocardial injury. In addition, we used the kainic acid method to lesion the IN and observed that the effect of EA was weakened. For example, the area of myocardial infarction of lesion IN + EA group in rats was significantly increased compared with that resulting from EA group, the expression of cTnI, LDH in serum was significantly increased, the firing frequency of pyramidal cells in the PVN was significantly reduced. A spectral energy diagram shows that the energy after damage was higher than that of EA group. At the same time, the expression of c-fos in the PVN increased again. CONCLUSION: Our results indicated that the PVN-IN nerve pathway may participate as an effective pathway of EA to improve the effect of myocardial injury.


Subject(s)
Electroacupuncture , Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , Acupuncture Points , Animals , Humans , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/therapy , Neural Pathways/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley
3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-691190

ABSTRACT

<p><b>OBJECTIVE</b>To study the effect of chrysin in inducing apoptosis of human hepatic carcinoma cells and explore the possible mechanism.</p><p><b>METHODS</b>Human hepatic carcinoma SMMC-7721 cells treated with DMSO or chrysin at different concentrations (5-200 μg/mL) were examined for changes in the cell proliferation using CCK-8 assay. The morphological changes of SMMC-7721 cells were observed in response to treatment with 5, 10, or 20 μg/mL chrysin, and the changes in the cell nuclei were observed using DAPI nuclear staining. Annexin Ⅴ-FITC/PI flow cytometry was used to determine the cell apoptosis rate. The changes in the apoptosis-related proteins (PARP and caspase-3) and MAPKs signal pathway were detected with Western blotting.</p><p><b>RESULTS</b>Chrysin treatment obviously suppressed the proliferation of SMMC-7721 cells in a dose-dependent manner below the concentration of 60 μg/mL. Chrysin (20 μg/mL) also caused significantly increased cell apoptosis and significant cleavage of PARP and caspase-3. Chrysin significantly activated MAPKs signaling pathway in a time-and dose-dependent manner, with the peak activation level occurring at 15 min. Pretreatment of the cells with specific inhibitors of the MAPKs pathway obviously inhibited the effect of chrysin in inducing cell apoptosis.</p><p><b>CONCLUSIONS</b>Chrysin inhibits the proliferation and promotes apoptosis of SMMC-7721 cells by regulating the activation of MAPKs signaling.</p>

SELECTION OF CITATIONS
SEARCH DETAIL
...