Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 436: 129284, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739793

ABSTRACT

Defluorination is a key factor in reducing biologically accumulated carcinogenic and teratogenic toxicity of fluoroglucocorticoids (FGCs). To enhance defluorination efficiency, a highly efficient defluorination-degrading strain Acinetobacter. pittii C3 was isolated, and the promotion mechanism through humic acid (HA)-mediated biotransformation was investigated. Optimal biodegradation conditions for Acinetobacter sp. pittii C3 were pH of 7.0, temperature of 25 â„ƒ, and HA content of 5.5 mg/L, according to response surface methodology analysis. The attenuation rate constant and maximum defluorination percentage of triamcinolone acetonide (TA) in HA-mediated biotransformation system (HA-C3) were 3.99 × 10-2 and 96%, respectively, which were 2.22 and 1.24 times higher than those in the unitary C3 biodegradation system (U-C3), respectively. The major defluorination pathways included elimination, hydrolysis, and hydrogenation, with contributions of 24.5%, 32.4%, and 43.1%, respectively. The bio-reductive hydrodefluorination rate was enhanced by 1.89 times that of HA-mediated, while the other two defluorination pathways exhibited insignificant changes. HA, as the congeries of negatively charged microbes and hydrophobic TA, accelerates the electron transfer rate between Acinetobacter. pittii C3 and TA through the quinone groups. Furthermore, the mutual conversion between the functional groups of hydroxyl oxidation and ketone reduction of HA provided electron donors for TA reductive defluorination and hydrogenation and electron acceptors for TA oxidation. This study provides an effective strategy for FGC-enhanced detoxification using natural HA.


Subject(s)
Acinetobacter , Humic Substances , Acinetobacter/metabolism , Biodegradation, Environmental , Biotransformation
2.
Environ Res ; 206: 112601, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34973200

ABSTRACT

In order to effectively remove refractory bisphenol A (BPA) from water, a novel nitrogen doped organic porous functional azo linked polymer (ALP-p) was designed and prepared according to the physicochemical characteristics of propane linked to two phenol hydroxyl groups. This ALP-p was synthesized with 98.5% yield, from pararosaniline and phloroglucinol, via the diazo coupling reaction to produce multiple adsorption functional groups of benzene ring, hydroxyl group and azo group. This functional material showed high adsorption capacity of 357.8 mg/g for 50 mg/L BPA, at 20 °C. The adsorption kinetics and isotherms were described by the pseudo-second-order and Langmuir model, respectively. The major adsorption mechanisms were attributed to the high specific surface area (259.8 m2/g) and pore volume (0.56 cm3/g) related surface adsorption and pore diffusion through porous stereoscopic stacking cavity anchorage. The functional group from the three-dimensional skeleton structures of ALP-p for BPA anchoring endowed chemisorption via π-π interaction between benzene rings and hydrogen-bonding (O-H⋯O, C-H⋯N, C-H⋯O and C-H⋯C) with the hydrogen atom of benzene ring, -OH from BPA and -OH, NN from ALP-p, respectively. The coexisting organic pollutants and alkali environment posed a negative effect on adsorption, while salinity had no significant effect on the process. The adsorption capacity and recovery of ALP-p were >93.5% and 81.6% after five cycles of operation.


Subject(s)
Water Pollutants, Chemical , Water , Adsorption , Benzhydryl Compounds , Kinetics , Phenols/analysis , Polymers , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...