Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20208686

ABSTRACT

Studies estimate that a substantial proportion of SARS-CoV-2 transmission occurs through individuals who do not exhibit symptoms. Mitigation strategies test only those who are moderately to severely symptomatic, excluding the substantial portion of cases that are asymptomatic yet still infectious and likely responsible for a large proportion of the virus spread (1-8). While isolating asymptomatic cases will be necessary to effectively control viral spread, these cases are functionally invisible and there is no current method to identify them for isolation. To address this major omission in COVID-19 control, we develop a strategy, Sampling-Testing-Quarantine (STQ), for identifying and isolating individuals with asymptomatic SARS-CoV-2 in order to mitigate the epidemic. STQ uses probability sampling in the general population, regardless of symptoms, then isolates the individuals who test positive along with their household members who are high probability for asymptomatic infections. To test the potential efficacy of STQ, we use an agent-based model, designed to computationally simulate the epidemic in the Seattle with infection parameters, like R0 and asymptomatic fraction, derived from population data. Our results suggest that STQ can substantially slow and decrease the spread of COVID-19, even in the absence of school and work shutdowns. Results also recommend which sampling techniques, frequency of implementation, and population subject to isolation are most efficient in reducing spread with limited numbers of tests. Significance StatementA substantial portion of SARS-CoV-2 infections are spread through asymptomatic carriers. Until a vaccine is developed, research indicates an urgent need to identify these asymptomatic infections to control COVID-19, but there is currently no effective strategy to do so. In this study, we develop such a strategy, a procedure called Sampling-Testing-Quarantine (STQ), that combines techniques from survey methods for sampling from the general population and testing and isolation techniques from epidemiology. With computational simulations, we demonstrate that STQ procedures can dramatically decrease and slow COVID-19 spread, even in the absence of widespread work, school, and community lockdowns. We also find particular implementation strategies (including sampling techniques, frequencies of implementation, and people who are subject to isolation) are most efficient in mitigating spread.

2.
Appl Geogr ; 392013 May.
Article in English | MEDLINE | ID: mdl-24277975

ABSTRACT

The design of an Agent-Based Model (ABM) is described that integrates Social and Land Use Modules to examine population-environment interactions in a former agricultural frontier in Northeastern Thailand. The ABM is used to assess household income and wealth derived from agricultural production of lowland, rain-fed paddy rice and upland field crops in Nang Rong District as well as remittances returned to the household from family migrants who are engaged in off-farm employment in urban destinations. The ABM is supported by a longitudinal social survey of nearly 10,000 households, a deep satellite image time-series of land use change trajectories, multi-thematic social and ecological data organized within a GIS, and a suite of software modules that integrate data derived from an agricultural cropping system model (DSSAT - Decision Support for Agrotechnology Transfer) and a land suitability model (MAXENT - Maximum Entropy), in addition to multi-dimensional demographic survey data of individuals and households. The primary modules of the ABM are the Initialization Module, Migration Module, Assets Module, Land Suitability Module, Crop Yield Module, Fertilizer Module, and the Land Use Change Decision Module. The architecture of the ABM is described relative to module function and connectivity through uni-directional or bi-directional links. In general, the Social Modules simulate changes in human population and social networks, as well as changes in population migration and household assets, whereas the Land Use Modules simulate changes in land use types, land suitability, and crop yields. We emphasize the description of the Land Use Modules - the algorithms and interactions between the modules are described relative to the project goals of assessing household income and wealth relative to shifts in land use patterns, household demographics, population migration, social networks, and agricultural activities that collectively occur within a marginalized environment that is subjected to a suite of endogenous and exogenous dynamics.

3.
Appl Geogr ; 31(1): 210-222, 2011 Jan.
Article in English | MEDLINE | ID: mdl-24436501

ABSTRACT

This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways.

SELECTION OF CITATIONS
SEARCH DETAIL
...