Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 252: 114630, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36764072

ABSTRACT

Rotenone, a widely used pesticide, causes dopaminergic neurons loss and increase the risk of Parkinson's disease (PD). However, few studies link the role of PARP1 to neuroinflammatory response and autophagy dysfunction in rotenone-induced neurodegeneration. Here, we identified that PARP1 overactivation caused by rotenone led to autophagy dysfunction and NLRP3-mediated inflammation. Further results showed that PARP1 inhibition could reduce NLRP3-mediated inflammation, which was effectively eliminated by TFEB knockdown. Moreover, PARP1 poly(ADP-ribosyl)ated TFEB that reduced autophagy. Of note, PARP1 inhibition could rescue rotenone-induced dopaminergic neurons loss. Overall, our study revealed that PARP1 blocks autophagy through poly (ADP-ribosyl)ating TFEB and inhibited NLRP3 degradation, which suggests that intervention of PARP1-TFEB-NLRP3 signaling can be a new treatment strategy for rotenone-induced neurodegeneration.


Subject(s)
Parkinson Disease , Rotenone , Humans , Rotenone/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Autophagy , Inflammation , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/pharmacology , Poly (ADP-Ribose) Polymerase-1/genetics
2.
Int J Oral Sci ; 14(1): 50, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36257937

ABSTRACT

Micrognathia is a severe craniofacial deformity affecting appearance and survival. Previous studies revealed that multiple factors involved in the osteogenesis of mandibular bone have contributed to micrognathia, but concerned little on factors other than osteogenesis. In the current study, we found that ectopic activation of Fgf8 by Osr2-cre in the presumptive mesenchyme for masseter tendon in mice led to micrognathia, masseter regression, and the disrupted patterning and differentiation of masseter tendon. Since Myf5-cre;Rosa26R-Fgf8 mice exhibited the normal masseter and mandibular bone, the possibility that the micrognathia and masseter regression resulted directly from the over-expressed Fgf8 was excluded. Further investigation disclosed that a series of chondrogenic markers were ectopically activated in the developing Osr2-cre;Rosa26R-Fgf8 masseter tendon, while the mechanical sensing in the masseter and mandibular bone was obviously reduced. Thus, it suggested that the micrognathia in Osr2-cre;Rosa26R-Fgf8 mice resulted secondarily from the reduced mechanical force transmitted to mandibular bone. Consistently, when tenogenic or myogenic components were deleted from the developing mandibles, both the micrognathia and masseter degeneration took place with the decreased mechanical sensing in mandibular bone, which verified that the loss of mechanical force transmitted by masseter tendon could result in micrognathia. Furthermore, it appeared that the micrognathia resulting from the disrupted tenogenesis was attributed to the impaired osteogenic specification, instead of the differentiation in the periosteal progenitors. Our findings disclose a novel mechanism for mandibular morphogenesis, and shed light on the prevention and treatment for micrognathia.


Subject(s)
Micrognathism , Mice , Animals , Masseter Muscle , Mandible , Osteogenesis
3.
J Agric Food Chem ; 69(46): 13942-13952, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34779196

ABSTRACT

Rotenone, a component of pesticides, is widely used in agriculture and potentially causes Parkinson's disease (PD). However, the regulatory mechanisms of rotenone-induced PD are unclear. Here, we revealed a novel feedback mechanism of p38-Parkin-ROS regulating rotenone-induced PD. Rotenone treatment led to not only the activation of p38 but also Parkin inactivation and reactive oxygen species (ROS) overproduction in SN4741 cells. Meanwhile, p38 activation regulated Parkin phosphorylation at serine 131 to disrupt Parkin-mediated mitophagy. Notably, both p38 inhibition and Parkin overexpression decreased ROS levels. Additionally, the ROS inhibitor N-acetyl-l-cysteine (NAC) inhibited p38 and activated Parkin-mediated mitophagy. Both p38 inhibition and the ROS inhibitor NAC exerted a protective effect by restoring cell death and mitochondrial function in rotenone-induced PD models. Based on these results, the p38-Parkin-ROS signaling pathway is involved in neurodegeneration. This pathway represents a valuable treatment strategy for rotenone-induced PD, and our study provides basic research evidence for the safe use of rotenone in agriculture.


Subject(s)
Insecticides , Parkinsonian Disorders/chemically induced , Reactive Oxygen Species , Rotenone , Ubiquitin-Protein Ligases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell Line , Feedback, Physiological , Insecticides/toxicity , Mice , Parkinsonian Disorders/metabolism , Reactive Oxygen Species/metabolism , Rotenone/toxicity , Signal Transduction , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...