Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553409

ABSTRACT

Hyperuricemia is mainly caused by insufficient renal urate excretion. Urate transporter 1 (URAT1), an organic anion transporter, is the main protein responsible for urate reabsorption. In this study, we utilized artificial intelligence-based AlphaFold2 program to construct URAT1 structural model. After molecular docking and conformational evaluation, four e-pharmacophoric models were constructed based on the complex structures of probenecid-URAT1, benzbromarone-URAT1, lesinurad-URAT1, and verinurad-URAT1. Combining pharmacophore modeling, molecular docking, MM/GBSA calculation and ADME prediction, 25 flavonoids were selected from the natural products database containing 10,968 molecules. Then, a model of HEK-293T cells overexpressing URAT1 was constructed, and the inhibitory activity to URAT1 of 25 flavonoids was evaluated by measuring their effect on cellular uptake of 6-carboxyfluorescein (6-CFL). Fisetin, baicalein, and acacetin showed the best activity with IC50 values of 12.77, 26.71, and 57.30 µM, respectively. Finally, the structure-activity relationship of these three flavonoids was analyzed by molecular docking and molecular dynamics simulations. The results showed that the carbonyl group on C-4 and hydroxyl group on C-7, C-4', and C-5' in flavonoids were conducive for URAT1 inhibitory effects. This study facilitates the application of flavonoids in the development of URAT1 inhibitors.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-8, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38361286

ABSTRACT

Ubiquitin-specific protease 7 (USP7) is a promising prognostic and druggable target for cancer therapy. Inhibition of USP7 can activate the MDM2-P53 signaling pathway, thereby promoting cancer cell apoptosis. This study based on watvina molecular docking of virtual screening method and biological evaluation found the new USP7 inhibitors targeting catalytic active site. Three hits were screened from 3760 natural products and validated as USP7 inhibitors by enzymatic and kinetic assays. The IC50 values of scutellarein (Scu), semethylzeylastera (DML) and salvianolic acid C (SAC) were 3.017, 6.865 and 8.495 µM, respectively. Further, we reported that the hits could downregulate MDM2 and activate p53 signal pathway in HCT116 cells. Molecular dynamics simulation was used to investigate the binding mechanism of USP7 to Scu, the compound with the best performance, which formed stable contact with Val296, Gln297, Phe409, Tyr465 and Tyr514. These interactions are essential for maintaining the biological activity of Scu. Three natural products are suitable as lead compounds for the development of novel USP7 inhibitors, especially anti-colon cancer drugs.Communicated by Ramaswamy H. Sarma.

3.
Carbohydr Polym ; 300: 120249, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372481

ABSTRACT

Obesity-induced lipid metabolism disorders are risk factors for hyperlipidemia, atherosclerosis, and non-alcoholic fatty liver disease. Seaweed oligosaccharides and Zn supplements are potential alternatives to alleviate obesity. Herein, ulvan oligosaccharide (UO) was used as a ligand to prepare a novel Zn supplement (UO-Zn). Subsequently, we explored potential mechanisms underlying UO- and UO-Zn-mediated improvements in lipid metabolism in mice fed a high-fat diet. We found that UO enhanced the abundance of key species (Blautia and Turicibacter) and functions (glycolytic, pentose phosphate, and histidine/lysine biosynthesis pathways) in the gut microbiota, thereby increasing the production of short-chain fatty acids and activating AMPK. Accordingly, UO treatment regulated the transcription of lipid metabolism genes, including ACOX1, ACC, and FASN, thereby reducing blood lipid levels and hepatic lipid accumulation. Zn could act synergistically with UO, enhancing the reversal of cholesterol transport and fatty acid ß-oxidation via the MTF1/PPARα pathway, markedly reducing body and adipose tissue weights.


Subject(s)
Diet, High-Fat , Lipid Metabolism , Mice , Animals , Diet, High-Fat/adverse effects , Zinc/pharmacology , Oligosaccharides/pharmacology , Oligosaccharides/metabolism , Liver , Obesity/drug therapy , Obesity/metabolism , Lipids , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...