Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 10(10): 3882-91, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23968358

ABSTRACT

The ability to assess in near-real time the tumor cell killing efficacy of chemotherapy regimens would improve patient treatment and survival. An ineffective regimen could be abandoned early in favor of a more effective treatment. We sought to noninvasively image treatment-related tumor cell death in mice using an optically labeled synthetic heat shock protein-90 (Hsp90) alkylator, 4-(N-(S-glutathionylacetyl)amino)phenylarsonous acid (GSAO). The Hsp90 chaperone is an important element in oncogene addiction and tumor cell survival, and its expression is enhanced by chemotherapy. These factors were predicted to favor the detection of tumor cell death using GSAO. GSAO specifically labeled apoptotic and necrotic tumor cells in culture and cells of comparable morphology in subcutaneous human pancreatic carcinoma tumors in mice. A near-infrared fluorescent conjugate of GSAO was used to noninvasively image cyclophosphamide-induced tumor cell death in murine orthotopic human mammary tumors. The GSAO conjugate did not accumulate in healthy organs or tissues in the mouse, and unbound compound was excreted rapidly via the kidneys. There was a significant increase in the GSAO fluorescence signal in the treated tumors measured either in vivo or ex vivo, and the fluorescence signal colocalized with apoptotic cells in sectioned tumors. The favorable biodistribution of optically labeled GSAO, the nature of its tumor cell target, and its capacity to noninvasively detect tumor cell death should facilitate the application of this compound in studies of the efficacy of existing and new chemotherapeutics.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Animals , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Female , Mammary Neoplasms, Animal/drug therapy , Mice , Mice, Inbred BALB C , Mice, Nude
2.
ACS Chem Neurosci ; 3(7): 530-7, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22860222

ABSTRACT

Traumatic brain injury is characterized by initial tissue damage, which then can lead to secondary processes such as cell death and blood-brain-barrier disruption. Clinical and preclinical studies of traumatic brain injury typically employ anatomical imaging techniques and there is a need for new molecular imaging methods that provide complementary biochemical information. Here, we assess the ability of a targeted, near-infrared fluorescent probe, named PSS-794, to detect cell death in a brain cryolesion mouse model that replicates certain features of traumatic brain injury. In short, the model involves brief contact of a cold rod to the head of a living, anesthetized mouse. Using noninvasive whole-body fluorescence imaging, PSS-794 permitted visualization of the cryolesion in the living animal. Ex vivo imaging and histological analysis confirmed PSS-794 localization to site of brain cell death. The nontargeted, deep-red Tracer-653 was validated as a tracer dye for monitoring blood-brain-barrier disruption, and a binary mixture of PSS-794 and Tracer-653 was employed for multicolor imaging of cell death and blood-brain-barrier permeability in a single animal. The imaging data indicates that at 3 days after brain cryoinjury the amount of cell death had decreased significantly, but the integrity of the blood-brain-barrier was still impaired; at 7 days, the blood-brain-barrier was still three times more permeable than before cryoinjury.


Subject(s)
Brain Injuries/diagnosis , Brain Injuries/metabolism , Cryosurgery , Disease Models, Animal , Optical Imaging/methods , Animals , Cryosurgery/adverse effects , Male , Mice , Mice, Hairless , Mice, Nude
3.
PLoS One ; 7(2): e31875, 2012.
Article in English | MEDLINE | ID: mdl-22348134

ABSTRACT

Bioluminescence imaging (BLI) has shown its appeal as a sensitive technique for in vivo whole body optical imaging. However, the development of injectable tumor-specific near-infrared fluorescent (NIRF) probes makes fluorescence imaging (FLI) a promising alternative to BLI in situations where BLI cannot be used or is unwanted (e.g., spontaneous transgenic tumor models, or syngeneic mice to study immune effects).In this study, we addressed the questions whether it is possible to detect tumor progression using FLI with appropriate sensitivity and how FLI correlates with BLI measurements. In addition, we explored the possibility to simultaneously detect multiple tumor characteristics by dual-wavelength FLI (~700 and ~800 nm) in combination with spectral unmixing. Using a luciferase-expressing 4T1-luc2 mouse breast cancer model and combinations of activatable and targeting NIRF probes, we showed that the activatable NIRF probes (ProSense680 and MMPSense680) and the targeting NIRF probes (IRDye 800CW 2-DG and IRDye 800CW EGF) were either activated by or bound to 4T1-luc2 cells. In vivo, we implanted 4T1-luc2 cells orthotopically in nude mice and were able to follow tumor progression longitudinally both by BLI and dual-wavelength FLI. We were able to reveal different probe signals within the tumor, which co-localized with immuno-staining. Moreover, we observed a linear correlation between the internal BLI signals and the FLI signals obtained from the NIRF probes. Finally, we could detect pulmonary metastases both by BLI and FLI and confirmed their presence histologically.Taken together, these data suggest that dual-wavelength FLI is a feasible approach to simultaneously detect different features of one tumor and to follow tumor progression with appropriate specificity and sensitivity. This study may open up new perspectives for the detection of tumors and metastases in various experimental models and could also have clinical applications, such as image-guided surgery.


Subject(s)
Diagnostic Imaging/methods , Fluorescent Dyes , Luminescent Measurements/methods , Mammary Neoplasms, Experimental/diagnosis , Animals , Benzenesulfonates , Diagnostic Imaging/instrumentation , Disease Models, Animal , Disease Progression , Indoles , Luminescent Measurements/instrumentation , Mammary Neoplasms, Experimental/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...