Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 9(5): 1518-1525, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35322824

ABSTRACT

Multi-principal element alloys (MPEAs) with remarkable performances possess great potential as structural, functional, and smart materials. However, their efficient performance-orientated design in a wide range of compositions and types is an extremely challenging issue, because of properties strongly dependent upon the composition and composition-dominated microstructure. Here, we propose a multistage-design approach integrating machine learning, physical laws and a mathematical model for developing the desired-property MPEAs in a very time-efficient way. Compared to the existing physical model- or machine-learning-assisted material development, the forward-and-inverse problems, including identifying the target property and unearthing the optimal composition, can be tackled with better efficiency and higher accuracy using our proposed avenue, which defeats the one-step component-performance design strategy by multistage-design coupling constraints. Furthermore, we developed a new multi-phase MPEA at the minimal time and cost, whose high strength-ductility synergy exceeded those of its system and subsystem reported so far by searching for the optimal combination of phase fraction and composition. The present work suggests that the property-guided composition and microstructure are precisely tailored through the newly built approach with significant reductions of the development period and cost, which is readily extendable to other multi-principal element materials.

2.
Int J Clin Exp Pathol ; 13(8): 2027-2034, 2020.
Article in English | MEDLINE | ID: mdl-32922597

ABSTRACT

Preserving the antigen effectiveness and DNA when bleaching melanin from melanin-containing tissues is an important part of medical diagnosis. Some prior studies focused excessively on the speed of bleaching neglecting the preservation of antigen and DNA, especially the nucleic acids in the long-archived tissues. The approach of this study was to determine the optimal bleaching conditions by increasing the H2O2 concentration and to compare that with the high temperature and potassium-permanganate bleaching methods. The comparisons involve immunohistochemical staining, HE staining, and gel electrophoresis, and setting the blank control (tissues without bleaching). The results demonstrated that bleaching using strong oxidizers or at high temperatures destroyed the antigen and DNA. Incubation with 30% H2O2 for 12 h at 24°C leaves only a small amount of melanin, preserving both the antigen effectiveness and the quality of the nucleic acids, and the target bands are clearly visible after PCR amplification. In conclusion, bleaching by increasing the concentration is a simple method, and it satisfies the requirements of clinical pathology and molecular pathology for the diagnosis and differential diagnosis of melanin-containing tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...