Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(22): e2207461, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36861365

ABSTRACT

The local coordination environment of catalytical moieties directly determines the performance of electrochemical energy storage and conversion devices, such as Li-O2 batteries (LOBs) cathode. However, understanding how the coordinative structure affects the performance, especially for non-metal system, is still insufficient. Herein, a strategy that introduces S-anion to tailor the electronic structure of nitrogen-carbon catalyst (SNC) is proposed to improve the LOBs performance. This study unveils that the introduced S-anion effectively manipulates the p-band center of pyridinic-N moiety, substantially reducing the battery overpotential by accelerating the generation and decomposition of intermediate products Li1-3 O4 . The lower adsorption energy of discharging product Li2 O2 on NS pair accounts for the long-term cyclic stability by exposing the high active area under operation condition. This work demonstrates an encouraging strategy to enhance LOBs performance by modulating the p-band center on non-metal active sites.

2.
Small ; 18(22): e2200367, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35384281

ABSTRACT

Mitigating the mechanical degradation and enhancing the ionic/electronic conductivity are critical but challengeable issues toward improving electrochemical performance of conversion-type anodes in rechargeable batteries. Herein, these challenges are addressed by constructing interconnected 3D hierarchically porous structure synergistic with Nb single atom modulation within a Co3 O4 nanocage (3DH-Co3 O4 @Nb). Such a hierarchical-structure nanocage affords several fantastic merits such as rapid ion migration and enough inner space for alleviating volume variation induced by intragrain stress and optimized stability of the solid-electrolyte interface. Particularly, experimental studies in combination with theoretical analysis verify that the introduction of Nb into the Co3 O4 lattice not only improves the electron conductivity, but also accelerates the surface/near-surface reactions defined as pesudocapacitance behavior. Dynamic behavior reveals that the ensemble design shows huge potential for fast and large lithium storage. These features endow 3DH-Co3 O4 @Nb with remarkable battery performance, delivering ≈740 mA h g-1 after ultra-long cycling of 1000 times under a high current density of 5 A g-1 . Importantly, the assembled 3DH-Co3 O4 @Nb//LiCoO2 pouch cell also presents a long-lived cycle performance with only ≈0.059% capacity decay per cycle, inspiring the design of electrode materials from both the nanostructure and atomic level toward practical applications.

3.
ACS Appl Mater Interfaces ; 13(24): 28252-28260, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34101431

ABSTRACT

The lithium-sulfur (Li-S) battery with a high theoretical energy density (2560 Wh kg-1) is one of the most promising candidates in next-generation energy storage systems. However, its practical application is impeded by the shuttle effect of lithium polysulfides, huge volume expansion, and overgrowth dendrite of lithium. Herein, we propose an artificial conformal agar polymer coating on a lithium anode (marked as A-Li). The functional layer facilitating the formation of a compact interphase on the lithium anode can effectively accommodate expansive volume and restrain the growth of dendritic lithium. The Li/Li symmetric cell with A-Li delivers stable plating/stripping cycling over 300 h at a high current density of 3.0 mA cm-2 and a high fixed areal capacity of 3.0 mAh cm-2. The cycle life of Li-Cu cells with A-Li is twice longer than that of pristine cells, and the Li-S batteries equipped with A-Li anodes also deliver an enhanced specific capacity and high Coulombic efficiencies. This work provides a pathway to protect metal Li anodes and contributes to the development of high-performance Li-S batteries.

4.
Chem Commun (Camb) ; 56(84): 12857-12860, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32969425

ABSTRACT

Sulfur atoms can reconstruct the configuration of PAN, which makes the electron transfer more convenient and reduces the energy barriers during Li ion diffusion. The sulfurized polyacrylonitrile plays a crucial role in anchoring the P4 molecule and electron transport simultaneously. Uniform RP nanoparticles (∼200 nm) are obtained using a simple liquid phase method. SPAN-RP shows an initial reversible capacity of 1214 mA h g-1 at 0.2C and retains a capacity of 860 mA h g-1 with a high coulombic efficiency of 99.6% after 200 cycles.

5.
ACS Appl Mater Interfaces ; 11(50): 46705-46713, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31750646

ABSTRACT

Prussian blue analogues (PBAs) have been regarded as prospective cathode materials for sodium-ion batteries due to tunable chemical composition and structure. Herein, a high-performance rhombohedral nickel hexacyanoferrate is synthesized via a controllable low-temperature reaction process. It can deliver impressive capacity retention of 87.8% after 10 000 cycles at 10C and high rate discharge capacity of 53 mAh g-1 at 40C. According to the structural evolution and lattice water movement, superior electrochemical performance is ascribed to small lattice alteration and high reversibility of rhombohedral-cubic transition upon Na+ insertion/extraction. The environment information of local- and long-range structure evolution is revealed by ex situ X-ray absorption spectroscopy (XAS) and in situ X-ray diffraction (XRD). Importantly, lattice water movement during cycling by Fourier transform infrared (FTIR) measurements offers an experimental validation about Na+ nonlinear migration path, as well as the accumulative lattice distortion effect from large-size Na(OH2)+ unit. The revealed mechanism points out the modified path for PBAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...