Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
BMC Microbiol ; 24(1): 158, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720268

ABSTRACT

BACKGROUND: The production of succinic acid (SA) from biomass has attracted worldwide interest. Saccharomyces cerevisiae is preferred for SA production due to its strong tolerance to low pH conditions, ease of genetic manipulation, and extensive application in industrial processes. However, when compared with bacterial producers, the SA titers and productivities achieved by engineered S. cerevisiae strains were relatively low. To develop efficient SA-producing strains, it's necessary to clearly understand how S. cerevisiae cells respond to SA. RESULTS: In this study, we cultivated five S. cerevisiae strains with different genetic backgrounds under different concentrations of SA. Among them, KF7 and NBRC1958 demonstrated high tolerance to SA, whereas NBRC2018 displayed the least tolerance. Therefore, these three strains were chosen to study how S. cerevisiae responds to SA. Under a concentration of 20 g/L SA, only a few differentially expressed genes were observed in three strains. At the higher concentration of 60 g/L SA, the response mechanisms of the three strains diverged notably. For KF7, genes involved in the glyoxylate cycle were significantly downregulated, whereas genes involved in gluconeogenesis, the pentose phosphate pathway, protein folding, and meiosis were significantly upregulated. For NBRC1958, genes related to the biosynthesis of vitamin B6, thiamin, and purine were significantly downregulated, whereas genes related to protein folding, toxin efflux, and cell wall remodeling were significantly upregulated. For NBRC2018, there was a significant upregulation of genes connected to the pentose phosphate pathway, gluconeogenesis, fatty acid utilization, and protein folding, except for the small heat shock protein gene HSP26. Overexpression of HSP26 and HSP42 notably enhanced the cell growth of NBRC1958 both in the presence and absence of SA. CONCLUSIONS: The inherent activities of small heat shock proteins, the levels of acetyl-CoA and the strains' potential capacity to consume SA all seem to affect the responses and tolerances of S. cerevisiae strains to SA. These factors should be taken into consideration when choosing host strains for SA production. This study provides a theoretical basis and identifies potential host strains for the development of robust and efficient SA-producing strains.


Subject(s)
Gene Expression Regulation, Fungal , Saccharomyces cerevisiae , Succinic Acid , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Succinic Acid/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Fermentation
2.
Bioresour Technol ; 373: 128732, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36774986

ABSTRACT

To explore an effective decentralized kitchen waste (KW) treatment system, the performance and bacterial community succession of thermophilic semi-continuous composting (TSC) of KW followed by static stacking (SS) was studied. A daily feeding ratio of 10% ensured stable performance of TSC using an integrated automatic reactor; the efficiencies of organic matter degradation and seed germination index (GI) reached 80.88% and 78.51%, respectively. SS for seven days further promoted the quality of the compost by improving the GI to 91.58%. Alpha- and beta-diversity analyses revealed significant differences between the bacterial communities of TSC and SS. Firmicutes, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Myxococcota were dominant during the TSC of KW, whereas the members of Proteobacteria and Bacteroidetes responsible for product maturity rapidly proliferated during the subsequent SS and ultimately dominated the compost with Firmicutes and Actinobacteria. These results provide new perspectives for decentralized KW treatment using TSC for practical applications.


Subject(s)
Composting , Soil , Fertilizers , Bacteria , Firmicutes , Manure/microbiology
3.
Bioresour Technol ; 369: 128462, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36503087

ABSTRACT

This study evaluated the compostability of rice straw as the main feedstock (75 % in dry weight), supplemented with three different nitrogen-rich wastes, namely food waste (FW), dairy manure (DM), and sewage sludge (SS). Organic matter (OM) degradation, maturity and fertility of the end-product, and bacterial community structure during the composting processes were compared. All composting processes generated mature end-product within 51 days. Notably, FW addition was more effective to accelerate rice straw OM degradation and significantly improved end-product fertility with a high yield of Chinese cabbage. The succession of the bacterial community was accelerated with FW supplementation. Genera Geobacillus, Chryseolinea, and Blastocatella were significantly enriched during the composting of rice straw with FW supplementation. Finally, temperature, total nitrogen, moisture, pH, and total carbon were the key factors affecting microorganisms. This study provides a promising alternative method to enhance the disposal of larger amounts of rice straw in a shorter time.


Subject(s)
Composting , Oryza , Refuse Disposal , Nitrogen/metabolism , Oryza/metabolism , Soil/chemistry , Bacteria/metabolism , Manure/microbiology , Dietary Supplements , Sewage
4.
Bioresour Technol ; 363: 127952, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36108941

ABSTRACT

This study evaluated the feasibility, system stability, and microbial community succession of thermophilic semi-continuous composting of kitchen waste (KW). The results revealed that treatment performance was stable at a 10 % feeding ratio, with an organic matter (OM) degradation efficiency of 81.5 % and seed germination index (GI) of 50.0 %. Moreover, the OM degradation efficiency and GI were improved to 83.4 % and 70.0 %, respectively, by maintaining an optimal compost moisture content (50-60 %). However, feeding ratios of ≥ 20 % caused deterioration of the composter system owing to OM overloading. Microbial community analysis revealed that Firmicutes, Actinobacteria, Chloroflexi, Proteobacteria, and Gemmatimonadetes were dominant. Additionally, moisture regulation significantly increased the Proteobacteria abundance by 57.1 % and reduced the Actinobacteria abundance by 57.8 %. Moreover, network analysis indicated that the bacterial community stability and positive interactions between genera were enhanced by moisture regulation. This information provides a useful reference for practical KW composting treatment in the semi-continuous mode.


Subject(s)
Actinobacteria , Composting , Microbiota , Bacteria , Manure , Soil
5.
Microb Cell Fact ; 21(1): 105, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35643525

ABSTRACT

BACKGROUND: Various inhibitors coexist in the hydrolysate derived from lignocellulosic biomass. They inhibit the performance of Saccharomyces cerevisiae and further restrict the development of industrial bioethanol production. Transcription factors are regarded as targets for constructing robust S. cerevisiae by genetic engineering. The tolerance-related transcription factors have been successively reported, while their regulatory mechanisms are not clear. In this study, we revealed the regulation mechanisms of Haa1p and Tye7p that had outstanding contributions to the improvement of the fermentation performance and multiple inhibitor tolerance of S. cerevisiae. RESULTS: Comparative transcriptomic analyses were applied to reveal the regulatory mechanisms of Haa1p and Tye7p under mixed sugar fermentation conditions with mixed inhibitors [acetic acid and furfural (AFur)] or without inhibitor (C) using the original strain s6 (S), the HAA1-overexpressing strain s6H3 (H), and the TYE7-overexpressing strain s6T3 (T). The expression of the pathways related to carbohydrate, amino acid, transcription, translation, cofactors, and vitamins metabolism was enhanced in the strains s6H3 and s6T3. Compared to C_H vs. C_S group, the unique DEGs in AFur_H vs. AFur_S group were further involved in oxidative phosphorylation, purine metabolism, vitamin B6 metabolism, and spliceosome under the regulation of Haa1p. A similar pattern appeared under the regulation of Tye7p, and the unique DEGs in AFur_T vs. AFur_S group were also involved in riboflavin metabolism and spliceosome. The most significant difference between the regulations of Haa1p and Tye7p was the intracellular energy supply. Haa1p preferred to enhance oxidative phosphorylation, while Tye7p tended to upregulate glycolysis/gluconeogenesis. CONCLUSIONS: Global gene expressions could be rewired with the overexpression of HAA1 or TYE7. The positive perturbations of energy and amino acid metabolism were beneficial to the improvement of the fermentation performance of the strain. Furthermore, strengthening of key cofactor metabolism, and transcriptional and translational regulation were helpful in improving the strain tolerance. This work provides a novel and comprehensive understanding of the regulation mechanisms of Haa1p and Tye7p in S. cerevisiae.


Subject(s)
Saccharomyces cerevisiae Proteins , Xylose , Acids/metabolism , Amino Acids/metabolism , Furaldehyde/metabolism , Glucose/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/genetics , Xylose/metabolism
6.
Biotechnol Biofuels Bioprod ; 15(1): 11, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35418148

ABSTRACT

BACKGROUND: Strong multiple stress-tolerance is a desirable characteristic for Saccharomyces cerevisiae when different feedstocks are used for economical industrial ethanol production. Random mutagenesis or genome shuffling has been applied for improving multiple stress-tolerance, however, these techniques are generally time-consuming and labor cost-intensive and their molecular mechanisms are unclear. Genetic engineering, as an efficient technology, is poorly applied to construct multiple stress-tolerant industrial S. cerevisiae due to lack of clear genetic targets. Therefore, constructing multiple stress-tolerant industrial S. cerevisiae is challenging. In this study, some target genes were mined by comparative transcriptomics analysis and applied for the construction of multiple stress-tolerant industrial S. cerevisiae strains with prominent bioethanol production. RESULTS: Twenty-eight shared differentially expressed genes (DEGs) were identified by comparative analysis of the transcriptomes of a multiple stress-tolerant strain E-158 and its original strain KF-7 under five stress conditions (high ethanol, high temperature, high glucose, high salt, etc.). Six of the shared DEGs which may have strong relationship with multiple stresses, including functional genes (ASP3, ENA5), genes of unknown function (YOL162W, YOR012W), and transcription factors (Crz1p, Tos8p), were selected by a comprehensive strategy from multiple aspects. Through genetic editing based on the CRISPR/Case9 technology, it was demonstrated that expression regulation of each of these six DEGs improved the multiple stress-tolerance and ethanol production of strain KF-7. In particular, the overexpression of ENA5 significantly enhanced the multiple stress-tolerance of not only KF-7 but also E-158. The resulting engineered strain, E-158-ENA5, achieved higher accumulation of ethanol. The ethanol concentrations were 101.67% and 27.31% higher than those of the E-158 when YPD media and industrial feedstocks (straw, molasses, cassava) were fermented, respectively, under stress conditions. CONCLUSION: Six genes that could be used as the gene targets to improve multiple stress-tolerance and ethanol production capacities of S. cerevisiae were identified for the first time. Compared to the other five DEGs, ENA5 has a more vital function in regulating the multiple stress-tolerance of S. cerevisiae. These findings provide novel insights into the efficient construction of multiple stress-tolerant industrial S. cerevisiae suitable for the fermentation of different raw materials.

7.
Biotechnol Biofuels ; 14(1): 26, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33468210

ABSTRACT

BACKGROUND: Renewable chemicals have attracted attention due to increasing interest in environmental concerns and resource utilization. Biobased production of industrial compounds from nonfood biomass has become increasingly important as a sustainable replacement for traditional petroleum-based production processes depending on fossil resources. Therefore, we engineered an Enterobacter cloacae budC and ldhA double-deletion strain (namely, EC∆budC∆ldhA) to redirect carbon fluxes and optimized the culture conditions to co-produce succinic acid and acetoin. RESULTS: In this work, E. cloacae was metabolically engineered to enhance its combined succinic acid and acetoin production during fermentation. Strain EC∆budC∆ldhA was constructed by deleting 2,3-butanediol dehydrogenase (budC), which is involved in 2,3-butanediol production, and lactate dehydrogenase (ldhA), which is involved in lactic acid production, from the E. cloacae genome. After redirecting and fine-tuning the E. cloacae metabolic flux, succinic acid and acetoin production was enhanced, and the combined production titers of acetoin and succinic acid from glucose were 17.75 and 2.75 g L-1, respectively. Moreover, to further improve acetoin and succinic acid production, glucose and NaHCO3 modes and times of feeding were optimized during fermentation of the EC∆budC∆ldhA strain. The maximum titers of acetoin and succinic acid were 39.5 and 20.3 g L-1 at 72 h, respectively. CONCLUSIONS: The engineered strain EC∆budC∆ldhA is useful for the co-production of acetoin and succinic acid and for reducing microbial fermentation costs by combining processes into a single step.

8.
Microb Cell Fact ; 19(1): 211, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33187525

ABSTRACT

BACKGROUND: Xylitol accumulation is a major barrier for efficient ethanol production through heterologous xylose reductase-xylitol dehydrogenase (XR-XDH) pathway in recombinant Saccharomyces cerevisiae. Mutated NADH-preferring XR is usually employed to alleviate xylitol accumulation. However, it remains unclear how mutated XR affects the metabolic network for xylose metabolism. In this study, haploid and diploid strains were employed to investigate the transcriptional responses to changes in cofactor preference of XR through RNA-seq analysis during xylose fermentation. RESULTS: For the haploid strains, genes involved in xylose-assimilation (XYL1, XYL2, XKS1), glycolysis, and alcohol fermentation had higher transcript levels in response to mutated XR, which was consistent with the improved xylose consumption rate and ethanol yield. For the diploid strains, genes related to protein biosynthesis were upregulated while genes involved in glyoxylate shunt were downregulated in response to mutated XR, which might contribute to the improved yields of biomass and ethanol. When comparing the diploids with the haploids, genes involved in glycolysis and MAPK signaling pathway were significantly downregulated, while oxidative stress related transcription factors (TFs) were significantly upregulated, irrespective of the cofactor preference of XR. CONCLUSIONS: Our results not only revealed the differences in transcriptional responses of the diploid and haploid strains to mutated XR, but also provided underlying basis for better understanding the differences in xylose metabolism between the diploid and haploid strains.


Subject(s)
Aldehyde Reductase/metabolism , D-Xylulose Reductase/metabolism , Saccharomyces cerevisiae/genetics , Transcription Factors/metabolism , Xylose/metabolism , Aldehyde Reductase/genetics , Biological Transport , Biosynthetic Pathways , D-Xylulose Reductase/genetics , Diploidy , Ethanol/metabolism , Fermentation , Gene Expression Regulation, Fungal , Genes, Fungal , Haploidy , Metabolic Networks and Pathways , Mutation , Saccharomyces cerevisiae/enzymology , Sequence Analysis, RNA , Signal Transduction , Transcriptome , Xylitol/metabolism
9.
FEMS Yeast Res ; 20(8)2020 12 16.
Article in English | MEDLINE | ID: mdl-33201998

ABSTRACT

Engineered Saccharomyces cerevisiae can reduce xylose to xylitol. However, in S.cerevisiae, there are several endogenous enzymes including xylitol dehydrogenase encoded by XYL2, sorbitol dehydrogenases encoded by SOR1/SOR2 and xylulokinase encoded by XKS1 may lead to the assimilation of xylitol. In this study, to increase xylitol accumulation, these genes were separately deleted through CRISPR/Cas9 system. Their effects on xylitol yield of an industrial S. cerevisiae CK17 overexpressing Candida tropicalis XYL1 (encoding xylose reductase) were investigated. Deletion of SOR1/SOR2 or XKS1 increased the xylitol yield in both batch and fed-batch fermentation with different concentrations of glucose and xylose. The analysis of the transcription level of key genes in the mutants during fed-batch fermentation suggests that SOR1/SOR2 are more crucially responsible for xylitol oxidation than XYL2 under the genetic background of S.cerevisiae CK17. The deletion of XKS1 gene could also weaken SOR1/SOR2 expression, thereby increasing the xylitol accumulation. The XKS1-deleted strain CK17ΔXKS1 produced 46.17 g/L of xylitol and reached a xylitol yield of 0.92 g/g during simultaneous saccharification and fermentation (SSF) of pretreated corn stover slurry. Therefore, the deletion of XKS1 gene provides a promising strategy to meet the industrial demands for xylitol production from lignocellulosic biomass.


Subject(s)
Fermentation , Metabolic Engineering , Saccharomyces cerevisiae/enzymology , Xylose/metabolism , Aldehyde Reductase/genetics , CRISPR-Cas Systems , D-Xylulose Reductase/genetics , Gene Deletion , Glucose/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Saccharomyces cerevisiae/genetics
10.
Appl Biochem Biotechnol ; 189(3): 1007-1019, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31161382

ABSTRACT

A heterologous xylose utilization pathway, either xylose reductase-xylitol dehydrogenase (XR-XDH) or xylose isomerase (XI), is usually introduced into Saccharomyces cerevisiae to construct a xylose-fermenting strain for lignocellulosic ethanol production. To investigate the molecular basis underlying the effect of different xylose utilization pathways on the xylose metabolism and ethanol fermentation, transcriptomes of flocculating industrial strains with the same genetic background harboring different xylose utilization pathways were studied. A different source of xylA did not obviously affect the change of the strains transcriptome, but compared with the XR-XDH strain, several key genes in the central carbon pathway were downregulated in the XI strains, suggesting a lower carbon flow to ethanol. The carbon starvation caused by lower xylose metabolism in XI strains further influenced the stress response and cell metabolism of amino acid, nucleobase, and vitamin. Besides, the downregulated genes mostly included those involved in mitotic cell cycle and the cell division-related process. Moreover, the transcriptomes analysis indicated that the after integrate xylA in the δ region, the DNA and chromosome stability and cell wall integrity of the strains were affected to some extent. The aim of this was to provide some reference for constructing efficient xylose-fermenting strains.


Subject(s)
Gene Expression Profiling , Industry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Xylose/metabolism , DNA, Recombinant/genetics , Fermentation , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...