Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chin J Nat Med ; 19(10): 784-795, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34688468

ABSTRACT

Sargassum fusiforme (S. fusiforme) has been used as an ingredient in Chinese herbal medicine for thousands of years. However, there are a limited number of studies concerning its therapeutic mechanism. High performance gel permeation chromatography (HPGPC) analysis showed that the average molecular weight of the S. fusiforme polysaccharide, SFPS 191212, is 43 kDa. SFPS 191212 is composed of mannose, rhamnose, galactose, xylose, glucose, and fucose (at a molar ratio: 2.1 : 2.9 : 1.8 : 15.5 : 4.6 : 62.5) with α- and ß-configurations. The present research evaluated the anti-tumor potential of the S. fusiforme polysaccharide in human erythroleukemia (HEL) cells in vitro. To explore the SFPS 191212's apoptosis mechanism in HEL cells, transcriptome analysis was performed on HEL cells that were incubated with SFPS 191212. The inhibitory effect of SFPS 191212 on HEL cell growth was also analyzed. It was found that SFPS 191212 inhibited HEL cell proliferation, reduced cell viability in a concentration-dependent manner, and induced an insignificant toxic effect on normal human embryonic lung (MRC-5) cells. Compared with the control group, transcriptome analysis identified a total of 598 differentially expressed genes (DEGs), including 243 up-regulated genes and 355 down-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on all DEGs, and 900 GO terms and 52 pathways were found to be significantly enriched. Finally, 23 DEGs were randomly selected and confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, SFPS 191212 down-regulated the PI3K/Akt signal transduction pathway. Our results provide a framework for understanding the effect of SFPS 191212 on cancer cells and can serve as a resource for delineating the anti-tumor mechanisms of S. fusiforme.


Subject(s)
Leukemia, Erythroblastic, Acute , Sargassum , Humans , Phosphatidylinositol 3-Kinases , Polysaccharides/pharmacology , Transcriptome
2.
J Physiol Biochem ; 77(1): 47-61, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33411212

ABSTRACT

Endothelial injury, which can cause endothelial inflammation and dysfunction, is an important mechanism for the development of atherosclerotic plaque. This study aims to investigate the functional role of miR-520c-3p in vascular endothelium during inflammatory diseases such as atherosclerosis. Quantitative real-time PCR was used to detect miR-520c-3p expression in in human umbilical vein endothelial cells (HUVECs) after treatment with platelet-derived growth factor (PDGF). Furthermore, the effects of miR-520c-3p overexpression and silencing on cell proliferation, adhesion, and apoptosis were assessed. Bioinformatics analysis and Biotin-labeled miRNA pull-down assay were used to confirm the targets of miR-520-3p. Then, the effects of miR-520c-3p on AKT and NF-κB signaling pathways were detected by western blot. Herein, we observed that the expression level of miR-520c-3p was downregulated in HUVECs under PDGF stimulation. Overexpression of miR-520c-3p not only decreased cell adhesion but also promoted proliferation and inhibited apoptosis to protect the viability of endothelial cells. It was confirmed that RELA is the target of miR-520c-3p. MiR-520c-3p inhibited the protein phosphorylation of AKT and RELA, and si-RELA reversed the promotion of AKT and RELA protein phosphorylation by anti-miR-520c-3p. In summary, our study suggested that miRNA-520c-3p targeting RELA through AKT and NF-κB signaling pathways regulated the proliferation, apoptosis, and adhesion of vascular endothelial cells. We conclude that miR-520c-3p may play an important role in the suppression of endothelial injury, which could serve as a biomarker and therapeutic target for atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , MicroRNAs/physiology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factor RelA/metabolism , Apoptosis , Cell Adhesion , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Humans , Signal Transduction , THP-1 Cells
3.
Can J Physiol Pharmacol ; 99(5): 536-548, 2021 May.
Article in English | MEDLINE | ID: mdl-32893666

ABSTRACT

Transmembrane protein 98 (TMEM98) is a novel gene, and its function has not been well investigated. In a prior study, we have shown that siRNA-mediated knockdown of TMEM98 inhibited interleukin-8 (IL-8) promoted endothelial cell (EC) adhesion, as well as vascular smooth muscle cell (VSMC) proliferation and migration in the vascular endothelial and smooth muscle cell dysfunction. Herein, we used gain- and loss-of-function approaches combined with biochemical techniques to further explore the role of TMEM98 in the vascular wall cell. The expression and secretion of TMEM98 was increased in cultured human umbilical vein endothelial cells (HUVECs) and VSMCs treated with IL-8 and platelet-derived growth factor-BB (PDGF-BB). Also, PDGF-BB secretion was increased in TMEM98-treated HUVECs and VSMCs. Thus, it appears that TMEM98 and PDGF-BB form a positive feedback loop in potentiation of EC adhesion, as well as VSMC proliferation and migration. Knockdown of TMEM98 mediated by siRNA inhibited PDGF-BB-promoted EC adhesion by downregulating the expression of ICAM-1 and VCAM-1, as well as impaired the proliferation and migration of VSMCs by suppressing the AKT/GSK3ß/cyclin D1 signaling pathway and reducing the expression of ß-catenin. Hence, TMEM98 promoted EC adhesion by inducing the expression of ICAM-1/VCAM-1 and triggered VSMC proliferation and migration by activating the ERK and AKT/GSK3ß signaling pathways. Taken together, TMEM98 may serve as a potential therapeutic target for the clinical treatment of vascular endothelial and smooth muscle cell dysfunction.


Subject(s)
Cell Movement , Muscle, Smooth, Vascular , Becaplermin , Cell Proliferation , Endothelial Cells , Humans , Myocytes, Smooth Muscle
4.
Neurobiol Aging ; 39: 69-81, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26923403

ABSTRACT

Tau is a key protein in the pathogenesis of various neurodegenerative diseases, which are categorized as tauopathies. Because the extent of tau pathologies is closely linked to that of neuronal loss and the clinical symptoms in Alzheimer's disease, anti-tau therapeutics, if any, could be beneficial to a broad spectrum of tauopathies. To learn more about tauopathy, we developed a novel transgenic nematode (Caenorhabditis elegans) model that expresses either wild-type or R406W tau in all the neurons. The wild-type tau-expressing worms exhibited uncoordinated movement (Unc) and neuritic abnormalities. Tau accumulated in abnormal neurites that lost microtubules. Similar abnormalities were found in the worms that expressed low levels of R406W-tau but were not in those expressing comparative levels of wild-type tau. Biochemical studies revealed that tau is aberrantly phosphorylated but forms no detergent-insoluble aggregates. Drug screening performed in these worms identified curcumin, a major phytochemical compound in turmeric, as a compound that reduces not only Unc but also the neuritic abnormalities in both wild-type and R406W tau-expressing worms. Our observations suggest that microtubule stabilization mediates the antitoxicity effect of curcumin. Curcumin is also effective in the worms expressing tau fragment, although it does not prevent the formation of tau-fragment dimers. These data indicate that curcumin improves the tau-induced neuronal dysfunction that is independent of insoluble aggregates of tau.


Subject(s)
Caenorhabditis elegans/physiology , Curcumin/pharmacology , Curcumin/therapeutic use , Neurons/physiology , Tauopathies/drug therapy , Tauopathies/genetics , Animals , Animals, Genetically Modified , Disease Models, Animal , Gene Expression , Neurons/metabolism , Protein Aggregation, Pathological , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism
5.
Front Mol Neurosci ; 9: 158, 2016.
Article in English | MEDLINE | ID: mdl-28082867

ABSTRACT

Dementia includes several diseases characterized by acquired and irreversible brain dysfunctions that interfere with daily life. According to the etiology, dementia can be induced by poisoning or metabolic disorders, and other cases of dementia have a clear pathogenesis. However, half of neurodegenerative diseases have an unclear pathogenesis and etiology. Alzheimer's disease (AD), Lewy body dementia and frontal-temporal dementia are the three most common types of dementia. These neurodegenerative diseases are characterized by the appearance of the following specific protein inclusions: amyloid beta and tau in AD; α-synuclein in Lewy body dementia; and tau, TDP-43, or FUS in frontal-temporal dementia. Thus far, studies on the pathogenesis of dementia mainly focus aberrant inclusions formed by the aforementioned proteins. As a historically heavily studied protein tau is likely to be associated with the pathogenesis of several neurodegenerative diseases that cause dementia. The role of tau in neurodegeneration has been unknown for many years. However, both pathological and genetic analyses have helped tau become gradually recognized as an important factor in the pathogenesis of tauopathy. Currently, especially in the field of AD, tau is attracting more attention and is being considered a potential target for drug development. In this review article, previously discovered biochemical and pathological features of tau are highlighted, and current opinions regarding the neurotoxicity of tau are summarized. Additionally, we introduce key amino acid sequences responsible for tau neurotoxicity from our studies using transgenic Caenorhabditis elegans. Finally, a new hypothesis regarding the roles of microtubule-associated protein 2 (MAP2) and tau in the pathogenesis of tauopathy is discussed.

6.
J Neurochem ; 135(1): 19-26, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26134402

ABSTRACT

The carboxyl-terminal sequence of tau composes the framework for its intracellular inclusions that appear in diverse neurodegenerative disorders known as tauopathies. However, microtubule-associated protein 2 (MAP2), which contains a homologous carboxyl-terminal sequence of tau, is undetectable in the mature tau inclusions. The mechanisms underlying this phenomenon have remained largely unknown. Here, we show that tau and MAP2 have different aggregation properties: tau aggregates to form filaments but MAP2 remains to be granules. Exchanging (221) YKPV(224) of tau (0N3R) near the PHF6 motif for (340) TKKI(343) of MAP2c profoundly changed aggregation properties, suggesting that the YKPV motif is important for filament formation, whereas the TKKI motif is for granule formation. Thus, these minimal sequences may determine the different fates of tau and MAP2 in the formation of inclusions in tauopathies. Tau and microtubule-associated protein 2 (MAP2) are homologous microtubule-associated proteins in neurons. So far, it is largely unknown why tau but not MAP2 is selectively involved in the filamentous inclusions (neurofibrillary tangles, NFT) formation in tauopathies, including Alzheimer's disease. In this study, we found that the difference of only two amino acids in tau and MAP2 sequences may determine their different fates in tauopathies. These results may lead to the elucidation of tau deregulation in pathological conditions.


Subject(s)
Alzheimer Disease/metabolism , Amino Acids/metabolism , Microtubule-Associated Proteins/metabolism , Neurofibrillary Tangles/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Humans , Neurons/metabolism
7.
PLoS One ; 9(2): e89796, 2014.
Article in English | MEDLINE | ID: mdl-24587039

ABSTRACT

Microtubule-associated protein 2 (MAP2) and Tau are abundant neuronal microtubule-associated proteins. Both proteins have highly homologous carboxyl-terminal sequences that function as microtubule-binding domains. Whereas Tau is widely accepted as a pathoetiological factor in human tauopathies, including Alzheimer's disease (AD), it is not known whether there is a relationship between MAP2 and tauopathy. To better understand the pathological roles of MAP2 and Tau, we compared their behaviors in transgenic Caenorhabditis elegans in which MAP2 or Tau was expressed pan-neuronally. Both MAP2 and Tau elicited severe neuronal dysfunction and neuritic abnormalities, despite the absence of detergent-insoluble aggregates in worm neurons. Biochemical analysis revealed that the expressed MAP2 or Tau in worms was highly phosphorylated and did not bind to microtubules. Newly raised antibodies to MAP2 that effectively distinguished between the highly homologous carboxyl-terminal sequences of MAP2 and Tau showed that MAP2 was not involved in the growth process of neurofibrillary tangles in the AD brain. These results indicate that Tau and MAP2 have different fates in the inclusion formation and raise the possibility that MAP2 plays a significant role in neurotoxicity in the AD brain despite the absence of MAP2-aggregates.


Subject(s)
Caenorhabditis elegans/metabolism , Microtubule-Associated Proteins/genetics , Neurofibrillary Tangles/metabolism , Tauopathies/metabolism , tau Proteins/genetics , Analysis of Variance , Animals , Blotting, Western , Fluorescent Antibody Technique , Humans , Microtubule-Associated Proteins/metabolism , Phosphorylation , Protein Structure, Tertiary/genetics , tau Proteins/metabolism
8.
Am J Physiol Heart Circ Physiol ; 298(2): H505-14, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19933418

ABSTRACT

We have been searching for a mechanism to induce smooth muscle contraction that is not associated with phosphorylation of the regulatory light chain (RLC) of smooth muscle myosin (Nakamura A, Xie C, Zhang Y, Gao Y, Wang HH, Ye LH, Kishi H, Okagaki T, Yoshiyama S, Hayakawa K, Ishikawa R, Kohama K. Biochem Biophys Res Commun 369: 135-143, 2008). In this article, we report that arachidonic acid (AA) stimulates ATPase activity of unphosphorylated smooth muscle myosin with maximal stimulation (R(max)) of 6.84 +/- 0.51 relative to stimulation by the vehicle and with a half-maximal effective concentration (EC(50)) of 50.3 +/- 4.2 microM. In the presence of actin, R(max) was 1.72 +/- 0.08 and EC(50) was 26.3 +/- 2.3 microM. Our experiments with eicosanoids consisting of the AA cascade suggested that they neither stimulated nor inhibited the activity. Under conditions that did not allow RLC to be phosphorylated, AA stimulated contraction of smooth muscle tissue with an R(max) of 1.45 +/- 0.07 and an EC(50) of 27.0 +/- 4.4 microM. In addition to the ATPase activities of the myosin, AA stimulated those of heavy meromyosin, subfragment 1 (S1), S1 from which the RLC was removed, and a recombinant heavy chain consisting of the myosin head. The stimulatory effects of AA on these preparations were about twofold. The site of AA action was indicated to be the step-releasing inorganic phosphate (P(i)) from the reaction intermediate of the myosin-ADP-P(i) complex. The enhancement of P(i) release by AA was supported by computer simulation indicating that AA docked in the actin-binding cleft of the myosin motor domain. The stimulatory effect of AA was detectable with both unphosphorylated myosin and the myosin in which RLC was fully phosphorylated. The AA effect on both myosin forms was suggested to cause excess contraction such as vasospasm.


Subject(s)
Arachidonic Acid/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/enzymology , Myosins/metabolism , Smooth Muscle Myosins/metabolism , Animals , Computer Simulation , Guinea Pigs , Male , Models, Animal , Muscle Contraction/physiology , Muscle, Smooth/drug effects , Myosins/drug effects , Phosphates/metabolism , Phosphorylation , Smooth Muscle Myosins/ultrastructure
9.
IUBMB Life ; 61(11): 1092-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19859981

ABSTRACT

Myosin light-chain kinase (MLCK) comprised of N-terminal actin-binding domain, central catalytic domain, and C-terminal myosin-binding domain. It exerted not only kinase activity to phosphorylate 20 kDa regulatory light chain of smooth muscle but also exerted non-kinase activity on myosin motor and myosin ATPase activities (Nakamura et al., Biochem. Biophys. Res. Commun. 2008, 369, 135). The previous studies on the multiple MLCK functions were done using MLCK fragments. The present study reported the expression of whole MLCK molecules in Escherichia coli in a large amount. The construct in which the calmodulin (CaM) binding domain for regulating kinase activity was mutated lost the kinase activity. However, the mutant exerted non-kinase activity and inhibited both myosin motor and ATPase activities. The domain that regulated kinase activity was also shown to be involved in the Ca(2+) regulation of non-kinase activity. The deletion mutants of actin-binding domain which located at N-terminal 1-41 amino acids demonstrated that non-kinase activity was mediated through actin filaments.


Subject(s)
Calcium/metabolism , Myosin-Light-Chain Kinase/metabolism , Actins/physiology , Binding Sites , Calcium-Binding Proteins/metabolism , Catalytic Domain , Escherichia coli/enzymology , Mutation , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/drug effects , Myosin-Light-Chain Kinase/genetics , Myosins/metabolism , Protein Structure, Tertiary , Recombinant Proteins/drug effects , Recombinant Proteins/metabolism
10.
Am J Physiol Heart Circ Physiol ; 296(5): H1683-93, 2009 May.
Article in English | MEDLINE | ID: mdl-19234090

ABSTRACT

The actin-myosin interaction of vascular smooth muscle cells (VSMCs) is regulated by myosin light chain kinase (MLCK), which is a fusion protein of the central catalytic domain with the N-terminal actin-binding and C-terminal myosin-binding domains. In addition to the regulatory role of kinase activity mediated by the catalytic domain, nonkinase activity that derives from both terminals is able to exert a regulatory role as reviewed by Nakamura et al. (32). We previously showed that nonkinase activity mediated the filopodia upon the stimulation by sphingosylphosphorylcholine (SPC) (25). To explore the regulatory role of nonkinase activity in chemotaxis, we constructed VSMCs where the expression of MLCK was totally abolished by using a lentivirus-mediated RNAi system. We hypothesized that the MLCK-downregulated VSMCs were unable to form filopodia and to migrate upon SPC stimulation and confirmed the hypothesis. We further constructed a kinase-inactive mutant from bovine cDNA coding wild-type (WT) MLCK by mutating the ATP-binding sites located in the catalytic domain, followed by confirming the presence (absence) of the kinase activity of WT (kinase-inactive mutant). We transfected WT and the mutant into MLCK-downregulated VSMCs. We expected that the transfected VSMCs will recover the ability to induce filopodia and chemotaxis toward SPC and found both constructs rescued the ability. Because they share the actin- and myosin-binding domains, we concluded nonkinase activity plays a major role for SPC-induced migration.


Subject(s)
Chemotaxis , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Myosin-Light-Chain Kinase/metabolism , Phosphorylcholine/analogs & derivatives , Pseudopodia/metabolism , Sphingosine/analogs & derivatives , Actins/metabolism , Animals , Binding Sites , Cattle , Cell Line , Chemotaxis/drug effects , Guinea Pigs , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/enzymology , Mutation , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/enzymology , Myosin Type II/metabolism , Myosin-Light-Chain Kinase/genetics , Phosphorylcholine/metabolism , Protein Kinase Inhibitors/pharmacology , Pseudopodia/drug effects , RNA Interference , RNA, Small Interfering/metabolism , Rats , Sphingosine/metabolism , Transfection , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
11.
Biochem Biophys Res Commun ; 369(1): 135-43, 2008 Apr 25.
Article in English | MEDLINE | ID: mdl-18053800

ABSTRACT

Myosin light-chain kinase (MLCK) of smooth muscle consists of an actin-binding domain at the N-terminal, the catalytic domain in the central portion, and the myosin-binding domain at the C-terminal. The kinase activity is mediated by the catalytic domain that phosphorylates the myosin light-chain of 20kDa (MLC20), activating smooth muscle myosin to interact with actin. Although the regulatory role of the kinase activity is well established, the role of non-kinase activity derived from actin-binding and myosin-binding domains remains unknown. This review is dedicated to Dr. Setsuro Ebashi, who devoted himself to elucidating the non-kinase activity of MLCK after establishing calcium regulation through troponin in skeletal and cardiac muscles. He proposed that the actin-myosin interaction of smooth muscle could be activated by the non-kinase activity of MLCK, a mechanism that is quite independent of MLC20 phosphorylation. The authors will extend his proposal for the role of non-kinase activity. In this review, we express MLCK and its fragments as recombinant proteins to examine their effects on the actin-myosin interaction in vitro. We also down-regulate MLCK in the cultured smooth muscle cells, and propose that MLC20 phosphorylation is not obligatory for the smooth muscle to contract.


Subject(s)
Actins/physiology , Calcium Signaling/physiology , Models, Biological , Muscle Contraction/physiology , Muscle, Smooth/physiology , Myosin-Light-Chain Kinase/physiology , Animals , Enzyme Activation , Feedback/physiology , Humans
12.
Biochem Biophys Res Commun ; 359(2): 398-401, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17543276

ABSTRACT

Drebrin-A is an actin-binding protein localized in the dendritic spines of mature neurons, and has been suggested to affect spine morphology [K. Hayashi, T. Shirao, Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons, J. Neurosci. 19 (1999) 3918-3925]. However, no biochemical analysis of drebrin-A has yet been reported. In this study, we purified drebrin-A using a bacterial expression system, and characterized it in vitro. Drebrin-A bound to actin filaments with a stoichiometry of one drebrin molecule to 5-6 actin molecules. Furthermore, drebrin-A decreased the Mg-ATPase activity of myosin V. In vitro motility assay revealed that the attachment of F-actin to glass surface coated with myosin-V was decreased by drebrin-A, but once F-actin attached to the surface, the sliding speed of F-actin was unaffected by the presence of drebrin A. These findings suggest that drebrin-A may affect spine dynamics, vesicle transport, and other myosin-V-driven motility in neurons through attenuating the interaction between actin and myosin-V.


Subject(s)
Actins/metabolism , Myosin Type V/metabolism , Neuropeptides/biosynthesis , Neuropeptides/chemistry , Adenosine Triphosphatases/metabolism , Animals , Ca(2+) Mg(2+)-ATPase/chemistry , DNA, Complementary/metabolism , Dendrites/metabolism , Dendritic Cells/metabolism , Dose-Response Relationship, Drug , Myosins/chemistry , Neurons/metabolism , Protein Binding , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...