Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(27): 10398-10404, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37382225

ABSTRACT

Building dynamic biological networks, especially DNA circuits, has provided a powerful prospect for exploring the intrinsic regulation processes of live cells. Nevertheless, for efficient intracellular microRNA analysis, the available multi-component circuits are constrained by their limited operating speed and efficiency due to the free diffusion of reactants. Herein, we developed an accelerated Y-shaped DNA catalytic (YDC) circuit for high-efficiency intracellular imaging of microRNA. By grafting the catalytic hairpin assembly (CHA) reactants into an integrated Y-shaped scaffold, the CHA probes were concentrated in a compact space, thus achieving high signal amplification. Profiting from the spatially confined reaction and the self-sustainably assembled DNA products, the YDC system facilitated reliable and in situ microRNA imaging in live cells. Compared with the homogeneously dispersed CHA reactants, the integrated YDC system could efficiently promote the reaction kinetics as well as the uniform delivery of CHA probes, thus providing a robust and reliable analytical tool for disease diagnosis and monitoring.


Subject(s)
Biosensing Techniques , DNA, Catalytic , MicroRNAs , MicroRNAs/analysis , DNA , Diagnostic Imaging , Biosensing Techniques/methods
2.
Small ; 19(17): e2207961, 2023 04.
Article in English | MEDLINE | ID: mdl-36717281

ABSTRACT

Trace analyte detection in complex intracellular environment requires the development of simple yet robust self-sufficient molecular circuits with high signal-gain and anti-interference features. Herein, a minimal non-enzymatic self-replicate DNA circuitry (SDC) system is proposed with high-signal-gain for highly efficient biosensing in living cells. It is facilely engineered through the self-stacking of only one elementary cascade hybridization reaction (CHR), thus is encoding with more economic yet effective amplification pathways and reactants. Trigger (T) stimulates the activation of CHR for producing numerous T replica that reversely motivate new CHR reaction cycles, thus achieving the successive self-replication of CHR system with an exponentially magnified readout signal. The intrinsic self-replicate circuity design and the self-accelerated reaction format of SDC system is experimentally demonstrated and theoretically simulated. With simple circuitry configuration and low reactant complexity, the SDC amplifier enables the high-contrast and accurate visualization of microRNA (miRNA), ascribing to its robust molecular recognition and self-sufficient signal amplification, thus offering a promising strategy for monitoring these clinically significant analytes.


Subject(s)
Biosensing Techniques , MicroRNAs , MicroRNAs/genetics , Nucleic Acid Amplification Techniques/methods , DNA , Nucleic Acid Hybridization , Diagnostic Imaging , Biosensing Techniques/methods
3.
Opt Lett ; 47(17): 4544-4547, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048700

ABSTRACT

A large amount of lateral noise will be generated in blood flow imaging with optical coherence tomography angiography (OCTA) due to the presence of muscle shaking, heartbeat, and respiration, resulting in the deterioration of images. In this paper, to the best of our knowledge, for the first time, the spatial frequency information of motion noise in the blood flow signal region is used to remove the motion noise and false connections in the blood flow signal region. The effectiveness of the proposed adaptive denoising algorithm is verified by the imaging of finger blood flow. It is found that OCTA with different projection methods has improved signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) after applying our algorithm. It is also found that the visual effect of the original blood flow image based on standard deviation projection is better, but mean projection is the most sensitive to the algorithm, and the average SNR and CNR are improved by 5.7 dB and 8.9 dB, respectively.


Subject(s)
Angiography , Tomography, Optical Coherence , Algorithms , Angiography/methods , Fourier Analysis , Signal-To-Noise Ratio , Tomography, Optical Coherence/methods
4.
Langmuir ; 38(32): 9822-9832, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35921226

ABSTRACT

Dynamic wetting, described by a dynamic contact angle (DCA), is a fundamental behavior of fluid on surface. With the development of blue energy, the research of droplet nanogenerator is flourishing. There is a growing interest in the dynamic wetting behavior of nanodroplets on surfaces. Molecular dynamics simulations are performed to reveal the influence of the velocity of nanodroplets and the wetting state (Cassie and Wenzel) on the DCA and the energy dissipation on the contact line. The simulation results demonstrate a more complicated scenario of dynamic wetting than the static wetting: The increasing rate of advancing DCA is lower than the decreasing rate of the receding DCA with respect to the nanodroplet velocity. As for the Wenzel state, larger surface roughness increases the dynamic wetting hysteresis, while for Cassie nanodroplets, the larger surface roughness leads to smaller dynamic wetting hysteresis. It is found that a structural force exists on the rough surface. The energy dissipation of the dynamic wetting mainly comes from the motion of the contact line, which is positively correlated to the velocity and can be decomposed to the viscosity and friction dissipations, respectively. The Cassie state causes much lower energy dissipation than the Wenzel state. Furthermore, the quasi-static contact angle is proposed to describe the contact angle on a rough surface. These findings advance the understanding of dynamic wetting behavior and inspire theoretical guidance for the design of novel functional interfaces.

5.
Angew Chem Int Ed Engl ; 60(50): 26363-26367, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34687127

ABSTRACT

Charge transfer (CT) interactions have been widely used to construct supramolecular systems, such as functional nanostructures and gels. However, to date, there is no report on the generation of CT complexes at the liquid-liquid interface. Here, by using an electron-deficient acceptor dissolved in water and an electron-rich donor dissolved in oil, we present the in situ formation and assembly of CT complex surfactants (CTCSs) at the oil-water interface. With time, CTCSs can assemble into higher-order nanofilms with exceptional mechanical properties, allowing the stabilization of liquids and offering the possibility to structure liquids into nonequilibrium shapes. Moreover, due to the redox-responsiveness of the electron-deficient acceptor, the association and dissociation of CTCSs can be reversibly manipulated in a redox process, leading to the switchable assembly and disassembly of the resultant constructs.

SELECTION OF CITATIONS
SEARCH DETAIL
...