Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Food Chem ; 462: 140987, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39217748

ABSTRACT

This study aimed to investigate the textural changes of cooked germinated brown rice (GBR) during freeze-thaw treatment and propose a strategy for enhancing its texture using magnetic field (MF). Seven freeze-thaw cycles exhibited more pronounced effects compared to 7 days of freezing, resulting in increases in GBR hardness by 85.59 %-164.36 % and decreases in stickiness by 10.34 %-43.55 %. Water loss, structural damage of GBR flour, and starch retrogradation contributed to the deterioration of texture. MF mitigated these effects by inhibiting the transformation of bound water into free water, reducing water loss by 0.39 %-0.57 %, and shortening the phase transition period by 2.0-21.5 min, thereby diminishing structural damage to GBR flour and hindering starch retrogradation. Following MF treatment (5 mT), GBR hardness decreased by 21.00 %, while stickiness increased by 45.71 %. This study elucidates the mechanisms through which MF enhances the texture, offering theoretical insights for the industrial production of high-quality frozen rice products.


Subject(s)
Cooking , Freezing , Germination , Magnetic Fields , Oryza , Oryza/chemistry , Oryza/growth & development , Oryza/metabolism , Flour/analysis , Starch/chemistry , Starch/metabolism , Water/chemistry , Hardness , Food Handling , Seeds/chemistry , Seeds/growth & development
2.
Food Chem ; 463(Pt 1): 141146, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39255698

ABSTRACT

Wheat bran is a significant byproduct of wheat flour milling and is enriched with dietary fiber. Arabinoxylan (AX), the major constituent of dietary fiber, plays a crucial role in the nutrition and processing of cereal food. This review comprehensively focuses on AX as a functional additive, specifically addressing its fractionation methods, structural characteristics, techno-functionality, and interactions with dough components. Structural features such as molecular weight (Mw), branching degree, and ferulic acid (FA) content significantly influence the functionality of AX, affecting gluten protein and starch characteristics during cereal food processing. Specifically, studies have shown that AX with optimum Mw and FA levels improved dough rheology and gas retention during bread-making. Furthermore, the solubility of AX varies across wheat bran fractions, with soluble AX fractions demonstrating notable dough-improving properties. By integrating structural complexity with functional properties, this review highlights the promising applications of wheat bran AX as a sustainable, functional dough additive.

3.
Foods ; 13(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39123575

ABSTRACT

Isoflavones, a class of substances with high biological activity, are abundant in soybeans. This study investigated isoflavone biosynthesis in soybean cell suspension cultures under UV-B radiation. UV-B radiation enhanced the transcription level and activity of key enzymes involved in isoflavone synthesis in cell suspension cultures. As a result, the isoflavone contents significantly increased by 19.80% and 91.21% in hypocotyl and cotyledon suspension cultures compared with the control, respectively. Meanwhile, a significant difference was observed in the composition of isoflavones between soybean hypocotyl and cotyledon suspension cultures. Genistin was only detected in hypocotyl suspension cultures, whereas glycitin, daidzein, and genistein accumulated in cotyledon suspension cultures. Therefore, UV-B radiation exhibited tissue-specific regulation of isoflavone biosynthesis in soybean cell suspension cultures. The combination of suspension cultures and abiotic stress provides a novel technological approach to isoflavone accumulation.

4.
Cell Rep ; 43(8): 114597, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39106180

ABSTRACT

The dynamics of N6-methyladenosine (m6A) mRNA modification are tightly controlled by the m6A methyltransferase complex and demethylases. Here, we find that auxin treatment alters m6A modification on auxin-responsive genes. Mechanically, TRANSMEMBRANE KINASE 4 (TMK4), a component of the auxin signaling pathway, interacts with and phosphorylates FKBP12-INTERACTING PROTEIN 37 (FIP37), a core component of the m6A methyltransferase complex, in an auxin-dependent manner. Phosphorylation of FIP37 enhances its interaction with RNA, thereby increasing m6A modification on its target genes, such as NITRILASE 1 (NIT1), a gene involved in indole-3-acetic acid (IAA) biosynthesis. 1-Naphthalacetic acid (NAA) treatment accelerates the mRNA decay of NIT1, in a TMK4- and FIP37-dependent manner, which leads to inhibition of auxin biosynthesis. Our findings identify a regulatory mechanism by which auxin modulates m6A modification through the phosphorylation of FIP37, ultimately affecting mRNA stability and auxin biosynthesis in plants.


Subject(s)
Adenosine , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Indoleacetic Acids , Indoleacetic Acids/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Phosphorylation , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , RNA Stability , Methyltransferases/metabolism , Methyltransferases/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics
5.
Curr Biol ; 34(15): 3454-3472.e7, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39059395

ABSTRACT

Most land plants alternate between generations of sexual gametophytes and asexual sporophytes. Unlike seed plants, fern gametophytes are free living and grow independently of their sporophytes. In homosporous ferns such as Ceratopteris, gametophytes derived from genetically identical spores exhibit sexual dimorphism, developing as either males or hermaphrodites. Males lack meristems and promote cell differentiation into sperm-producing antheridia. In contrast, hermaphrodites initiate multicellular meristems that stay undifferentiated, sustain cell division and prothallus expansion, and drive the formation of egg-producing archegonia. Once initiating the meristem, hermaphrodites secrete the pheromone antheridiogen, which triggers neighboring slower-growing gametophytes to develop as males, while the hermaphrodites themselves remain insensitive to antheridiogen. This strategy promotes outcrossing and prevents all individuals in the colony from becoming males. This study reveals that an evolutionarily conserved GRAS-domain transcriptional regulator (CrHAM), directly repressed by Ceratopteris microRNA171 (CrmiR171), promotes meristem development in Ceratopteris gametophytes and determines the male-to-hermaphrodite ratio in the colony. CrHAM preferentially accumulates within the meristems of hermaphrodites but is excluded from differentiated antheridia. CrHAM sustains meristem proliferation and cell division through conserved hormone pathways. In the meantime, CrHAM inhibits the antheridiogen-induced conversion of hermaphrodites to males by suppressing the male program expression and preventing meristem cells from differentiating into sperm-producing antheridia. This finding establishes a connection between meristem indeterminacy and sex determination in ferns, suggesting both conserved and diversified roles of meristem regulators in land plants.


Subject(s)
Germ Cells, Plant , Meristem , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Germ Cells, Plant/growth & development , Germ Cells, Plant/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Pteridaceae/genetics , Pteridaceae/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Sex Determination Processes
6.
Food Chem ; 459: 140387, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-38996639

ABSTRACT

In the present study, protein-glutaminase (PG) from Chryseobacterium proteolyticum was applied to improve the processing properties of glutinous rice flour (GRF). After PG modification, the degree of deamidation of glutinous rice protein (GRP) reached 13.6% at 2.0 h, with smaller particle size and decreased zeta potential. The interaction of GRP with starch in PG-modified GRF (PM-GRF) was changed, exhibiting in protein aggregates decreasing and exposure of starch on the surface of GRF. Compared with unmodified GRF (UM-GRF), the solubility and turbidity of PM-GRF were both increased. The rheological properties reflected that the viscosity of PM-GRF paste was increased, and the freeze-thaw stability was also enhanced. Moreover, the textural characteristics showed that the hardness of PM-GRF balls remarkably reduced and the springiness increased. These results indicate that deamidation by PG could be an efficient method for improving characteristics of GRP and GRF.


Subject(s)
Flour , Glutaminase , Oryza , Plant Proteins , Rheology , Starch , Oryza/chemistry , Oryza/metabolism , Starch/chemistry , Starch/metabolism , Flour/analysis , Plant Proteins/chemistry , Plant Proteins/metabolism , Viscosity , Glutaminase/chemistry , Glutaminase/metabolism , Solubility , Food Handling , Particle Size , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Gels/chemistry
7.
J Integr Neurosci ; 23(6): 119, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38940087

ABSTRACT

OBJECTIVES: The majority of neuromyelitis optica spectrum disorders (NMOSD) patients are seropositive for aquaporin-4 (AQP4)-specific antibodies [also named neuromyelitis optica immunoglobulin G antibodies (NMO-IgG)]. Although NMO-IgG can induce pathological changes in the central nervous system (CNS), the immunological changes in the CNS and peripheral tissue remain largely unknown. We investigated whether NMO-IgG binds to tissue expressing AQP4 and induces immunological changes in the peripheral tissue and CNS. METHODS: C57BL/6 female mice were assigned into an NMOSD or control group. Pathological and immunological changes in peripheral tissue and CNS were measured by immunostaining and flow cytometry, respectively. Motor impairment was measured by open-field test. RESULTS: We found that NMO-IgG did bind to astrocyte- and AQP4-expressing peripheral tissue, but induced glial fibrillary acidic protein and AQP4 loss only in the CNS. NMO-IgG induced the activation of microglia and modulated microglia polarization toward the classical (M1) phenotype, but did not affect innate or adaptive immune cells in the peripheral immune system, such as macrophages, neutrophils, Th17/Th1, or IL-10-producing B cells. In addition, NMOSD mice showed significantly less total distance traveled and higher immobility time in the open field. CONCLUSIONS: We found that injection of human NMO-IgG led to astrocytopathic lesions with microglial activation in the CNS. However, there were no significant pathological or immunological changes in the peripheral tissues.


Subject(s)
Aquaporin 4 , Immunoglobulin G , Mice, Inbred C57BL , Neuromyelitis Optica , Animals , Neuromyelitis Optica/immunology , Neuromyelitis Optica/pathology , Aquaporin 4/immunology , Female , Humans , Mice , Disease Models, Animal , Microglia/metabolism , Microglia/immunology , Microglia/drug effects , Autoantibodies/immunology , Astrocytes/immunology , Astrocytes/metabolism , Astrocytes/pathology , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/immunology , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology
8.
Food Chem ; 456: 139984, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38876063

ABSTRACT

To improve the stability of anthocyanins and techno-functionality of purple and blue wheat, the selectively hydrolyzed soy protein (reduced glycinin, RG) and ß-conglycinin (7S) were prepared and their enhanced effects were comparatively investigated. The anthocyanins in purple wheat showed higher stability compared to that of the blue wheat during breadmaking. The cyanidin-3-O-glucoside and cyanidin-3-O-rutincoside in purple wheat and delphinidin-3-O-rutinoside and delphinidin-3-O-glucoside in blue wheat were better preserved by RG. Addition of RG and 7S enhanced the quality of steamed bread made from colored and common wheat, with RG exhibited a more prominent effect. RG and 7S suppressed the gelatinization of starch and improved the thermal stability. Both RG and 7S promoted the unfolding process of gluten proteins and facilitated the subsequent crosslinking of glutenins and gliadins by disulfide bonds. Polymerization of α- and γ-gliadin into glutenin were more evidently promoted by RG, which contributed to the improved steamed bread quality.


Subject(s)
Anthocyanins , Bread , Soybean Proteins , Triticum , Triticum/chemistry , Bread/analysis , Anthocyanins/chemistry , Soybean Proteins/chemistry , Hydrolysis , Food Handling , Color , Globulins/chemistry , Steam , Flour/analysis , Cooking , Glutens/chemistry , Hot Temperature
9.
Nat Commun ; 15(1): 4813, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844461

ABSTRACT

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) poses a major threat to the global swine industry, yet effective prevention and control measures remain elusive. This study unveils Nitazoxanide (NTZ) as a potent inhibitor of PRRSV both in vitro and in vivo. Through High-Throughput Screening techniques, 16 potential anti-PRRSV compounds are identified from a library comprising FDA-approved and pharmacopeial drugs. We show that NTZ displays strong efficacy in reducing PRRSV proliferation and transmission in a swine model, alleviating viremia and lung damage. Additionally, Tizoxanide (TIZ), the primary metabolite of NTZ, has been identified as a facilitator of NMRAL1 dimerization. This finding potentially sheds light on the underlying mechanism contributing to TIZ's role in augmenting the sensitivity of the IFN-ß pathway. These results indicate the promising potential of NTZ as a repurposed therapeutic agent for Porcine Reproductive and Respiratory Syndrome (PRRS). Additionally, they provide valuable insights into the antiviral mechanisms underlying NTZ's effectiveness.


Subject(s)
Antiviral Agents , High-Throughput Screening Assays , Nitro Compounds , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Thiazoles , Animals , Porcine respiratory and reproductive syndrome virus/drug effects , Nitro Compounds/pharmacology , Swine , Antiviral Agents/pharmacology , High-Throughput Screening Assays/methods , Porcine Reproductive and Respiratory Syndrome/drug therapy , Porcine Reproductive and Respiratory Syndrome/virology , Thiazoles/pharmacology , Virus Replication/drug effects , Cell Line , Viremia/drug therapy , Viremia/virology
10.
Adv Sci (Weinh) ; : e2401187, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877642

ABSTRACT

Designing bifunctional catalysts to reduce the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) reaction barriers while accelerating the reaction kinetics is perceived to be a promising strategy to improve the performance of Zinc-air batteries. Unsymmetric configuration in single-atom catalysts has attracted attention due to its unique advantages in regulating electron orbitals. In this work, a seesaw effect in unsymmetric Fe-Co bimetallic monoatomic configurations is proposed, which can effectively improve the OER/ORR bifunctional activity of the catalyst. Compared with the symmetrical model of Fe-Co, a strong charge polarization between Co and Fe atoms in the unsymmetric model is detected, in whom the spin-down electrons around Co atoms are much higher than those spin-up electrons. The seesaw effect occurred between Co atoms and Fe atoms, resulting in a negative shift of the d-band center, which means that the adsorption of oxygen intermediates is weakened and more conducive to their dissociation. The optimized reaction kinetics of the catalyst leads to excellent performance in ZABs, with a peak power density of 215 mW cm-2 and stable cycling for >1300 h and >4000 cycles. Flexible Zinc-air batteries have also gained excellent performance to demonstrate their potential in the field of flexible wearables.

11.
J Colloid Interface Sci ; 669: 466-476, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38723535

ABSTRACT

Heterostructure engineering is considered a crucial strategy to modulate the intrinsic charge transfer behavior of materials, enhance catalytic activity, and optimize sulfur electrochemical processes. However, parsing the role of heterogeneous interface-structure-property relationships in heterostructures is still a key scientific issue to realize the efficient catalytic conversion of polysulfides. Based on this, molybdenum carbide (Mo2C) was successfully partial reduced to molybdenum metal (Mo) via a thermal reduction at high-temperature and the typical Mo-Mo2C-based Mott-Schottky heterostructures were simultaneously constructed, which realized the modulation of the electronic structure of Mo2C and optimized the conversion process of lithium polysulfides (LPS). Compared with single molybdenum carbide, the modulated molybdenum carbide acts as an electron donor with stronger Mo-S bonding strength as well as higher polysulfide adsorption energy, faster Li2S conversion kinetics, and greatly facilitates the adsorption → catalysis process of LPS. As a result, yolk-shell Mo-Mo2C heterostructure (C@Mo-Mo2C) exhibits excellent cycling performance as a sulfur host, with a discharge specific capacity of 488.41 mAh g-1 for C@Mo-Mo2C/S at 4 C and present an excellent high-rate cyclic performance accompanied by capacity decay rate of 0.08 % per cycle after 400 cycles at 2 C. Heterostructure-acting Mo2C electron distribution modulation engineering may contributes to the understanding of the structure-interface-property interaction law in heterostructures and further enables the efficient modulation of the chemical behavior of sulfur.

12.
Food Res Int ; 186: 114335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729717

ABSTRACT

Germination holds the key to nutritional equilibrium in plant grains. In this study, the effect of soybean germination on the processing of soymilk (SM) and glucono-δ-lactone (GDL) induced soymilk gel (SG) was investigated. Germination promoted soybean sprout (SS) growth by activating the energy metabolism system. The energy metabolism was high during the three-day germination and was the most vigorous on the second day of germination. After germination, protein dissolution was improved in SM, and endogenous enzymes produced small molecule proteins. Small molecule proteins were more likely to aggregate to produce SM protein particles. Germination increased the water-holding capacity of SG induced by GDL but weakened the strength. Furthermore, the dynamic fluctuations in isoflavone content were closely monitored throughout the processing of soybean products, including SS, SM, and SG. Although the total amount of isoflavones in SM and SG processed from germinated soybeans decreased, a significant enrichment in the content of aglycone isoflavones was observed. The content of aglycone isoflavones in SG processed from germinated soybeans on the second day of germination was 736.17 ± 28.49 µg/g DW, which was 83.19 % higher than that of the control group. This study demonstrates that germination can enhance the nutritional value of soybean products, providing innovative opportunities for the development of health-promoting soybean-based products.


Subject(s)
Gels , Germination , Glycine max , Isoflavones , Soy Milk , Isoflavones/analysis , Isoflavones/metabolism , Soy Milk/chemistry , Soy Milk/metabolism , Glycine max/growth & development , Glycine max/chemistry , Glycine max/metabolism , Food Handling/methods , Nutritive Value , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Energy Metabolism , Lactones/metabolism , Lactones/analysis
13.
Cell Rep ; 43(5): 114199, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38728138

ABSTRACT

Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-µm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.


Subject(s)
Electrodes, Implanted , Spinal Cord , Animals , Spinal Cord/physiology , Mice , Action Potentials/physiology , Motor Activity/physiology , Neurons/physiology , Locomotion/physiology , Mice, Inbred C57BL , Male
14.
CNS Neurosci Ther ; 30(5): e14736, 2024 05.
Article in English | MEDLINE | ID: mdl-38739106

ABSTRACT

AIMS: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease. Microglia are reportedly involved in the pathogenesis of MS. However, the key molecules that control the inflammatory activity of microglia in MS have not been identified. METHODS: Experimental autoimmune encephalomyelitis (EAE) mice were randomized into CD22 blockade and control groups. The expression levels of microglial CD22 were measured by flow cytometry, qRT-PCR, and immunofluorescence. The effects of CD22 blockade were examined via in vitro and in vivo studies. RESULTS: We detected increased expression of microglial CD22 in EAE mice. In addition, an in vitro study revealed that lipopolysaccharide upregulated the expression of CD22 in microglia and that CD22 blockade modulated microglial polarization. Moreover, an in vivo study demonstrated that CD22 blockade aggravated EAE in mice and promoted microglial M1 polarization. CONCLUSION: Collectively, our study indicates that CD22 may be protective against EAE and may play a critical role in the maintenance of immune homeostasis in EAE mice.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Microglia , Sialic Acid Binding Ig-like Lectin 2 , Animals , Female , Mice , Cell Polarity/drug effects , Cell Polarity/physiology , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Myelin-Oligodendrocyte Glycoprotein/toxicity , Myelin-Oligodendrocyte Glycoprotein/immunology
15.
Polymers (Basel) ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674980

ABSTRACT

Nanocellulose fiber materials were considered promising biomaterials due to their excellent biodegradability, biocompatibility, high hydrophilicity, and cost-effectiveness. However, their low proton conductivity significantly limited their application as proton exchange membranes. The methods previously reported to increase their proton conductivity often introduced non-biodegradable groups and compounds, which resulted in the loss of the basic advantages of this natural polymer in terms of biodegradability. In this work, a green and sustainable strategy was developed to prepare cellulose-based proton exchange membranes that could simultaneously meet sustainability and high-performance criteria. Adenine and thymine were introduced onto the surface of tempo-oxidized nanocellulose fibers (TOCNF) to provide many transition sites for proton conduction. Once modified, the proton conductivity of the TOCNF membrane increased by 31.2 times compared to the original membrane, with a specific surface area that had risen from 6.1 m²/g to 86.5 m²/g. The wet strength also increased. This study paved a new path for the preparation of environmentally friendly membrane materials that could replace the commonly used non-degradable ones, highlighting the potential of nanocellulose fiber membrane materials in sustainable applications such as fuel cells, supercapacitors, and solid-state batteries.

16.
Polymers (Basel) ; 16(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38611265

ABSTRACT

Natural polymer-based adhesive hydrogels have garnered significant interest for their outstanding strength and versatile applications, in addition to being eco-friendly. However, the adhesive capabilities of purely natural products are suboptimal, which hampers their practical use. To address this, we engineered carboxymethyl cellulose (CMC) surfaces with complementary bases, adenine (A) and thymine (T), to facilitate the self-assembly of adhesive hydrogels (CMC-AT) with a nanofiber configuration. Impressively, the shear adhesive strength reached up to 6.49 MPa with a mere 2% adhesive concentration. Building upon this innovation, we conducted a comparative analysis of the shear adhesion properties between CMC and CMC-AT hydrogel adhesives when applied to delignified and non-delignified wood chips. We examined the interplay between the adhesives and the substrate, as well as the role of mechanical interlocking in overall adhesion performance. Our findings offer a fresh perspective on the development of new biodegradable polymer hydrogel adhesives.

17.
Plant Physiol Biochem ; 210: 108667, 2024 May.
Article in English | MEDLINE | ID: mdl-38678946

ABSTRACT

This study aims to investigate the quality changes of germinated soybeans during refrigerated storage (4 °C), with an emphasis on the stimulatory effect of refrigeration on their special functional compounds. After germinating for two days, germinated soybeans were stored at 4 °C for seven days, while the germinated soybeans stored at 25 °C served as control group. The results showed that refrigerated storage significantly affected the physiological changes in germinated soybeans. The weight loss rate, browning rate, malondialdehyde (MDA) content and H2O2 content all decreased dramatically during refrigerated storage compared to the control group. The total phenolic and total flavonoid contents of germinated soybeans under refrigeration exhibited a trend of increasing and then decreasing over time. Additionally, during refrigerated storage, the total isoflavone content reached a peak of 8.72 g/kg on the fifth day, in which the content of daidzein and glycitin increased by 45% and 49% respectively, when compared with the control group. Moreover, the content of γ-aminobutyric acid (GABA) peaked on the first day, and kept a high level during storage. In which, the refrigerated group was 2.35-, 2.88-, 1.67-fold respectively after storage for three to seven days. These results indicated that refrigeration stimulated the biosynthesis of isoflavones and GABA in germinated soybeans during storage. More importantly, there was a sequential difference in the timing of the stimulation of the two functional components under refrigeration.


Subject(s)
Food Storage , Germination , Glycine max , Isoflavones , Refrigeration , gamma-Aminobutyric Acid , Glycine max/metabolism , Glycine max/growth & development , Isoflavones/metabolism , gamma-Aminobutyric Acid/metabolism , Food Storage/methods , Malondialdehyde/metabolism , Hydrogen Peroxide/metabolism
18.
Cell Mol Life Sci ; 81(1): 113, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436697

ABSTRACT

APE1 is an essential gene involved in DNA damage repair, the redox regulation of transcriptional factors (TFs) and RNA processing. APE1 overexpression is common in cancers and correlates with poor patient survival. Stress granules (SGs) are phase-separated cytoplasmic assemblies that cells form in response to environmental stresses. Precise regulation of SGs is pivotal to cell survival, whereas their dysregulation is increasingly linked to diseases. Whether APE1 engages in modulating SG dynamics is worthy of investigation. In this study, we demonstrate that APE1 colocalizes with SGs and promotes their formation. Through phosphoproteome profiling, we discover that APE1 significantly alters the phosphorylation landscape of ovarian cancer cells, particularly the phosphoprofile of SG proteins. Notably, APE1 promotes the phosphorylation of Y-Box binding protein 1 (YBX1) at S174 and S176, leading to enhanced SG formation and cell survival. Moreover, expression of the phosphomutant YBX1 S174/176E mimicking hyperphosphorylation in APE1-knockdown cells recovered the impaired SG formation. These findings shed light on the functional importance of APE1 in SG regulation and highlight the importance of YBX1 phosphorylation in SG dynamics.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Ovarian Neoplasms , Stress Granules , Y-Box-Binding Protein 1 , Female , Humans , Endodeoxyribonucleases , Ovarian Neoplasms/genetics , Phosphorylation , Stress Granules/metabolism , Y-Box-Binding Protein 1/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
19.
Article in English | MEDLINE | ID: mdl-38529606

ABSTRACT

BACKGROUND: Transplantation of neural stem cells improves ischemic stroke outcomes in rodent models and is currently in the clinical test stage. However, the optimal delivery route to achieve improved efficacy remains undetermined. OBJECTIVE: This study aims to evaluate three more clinically feasible delivery routes: intravenous (IV), intranasal (IN), and intracerebroventricular (ICV). We compared the therapeutic efficacies of the three routes of transplanting human neural stem cells (hNSCs) into mice with permanent middle cerebral artery obstruction (pMCAO). METHODS: Behavioral tests and cresyl violet staining were used to evaluate the therapeutic efficacies of functional recovery and lesion volumes. The expression of proinflammatory cytokines and neurotrophic factors was measured by real-time PCR. The distribution and differentiation of hNSCs were determined by immunofluorescence staining. The effect on endogenous neurogenesis and astrocyte function were determined by immunofluorescence staining and western blot. RESULTS: hNSC transplantation using the three routes improved behavioral outcomes and reduced lesion volumes; IV transplantation of hNSCs results in earlier efficacy and improves the inflammatory microenvironment. The long-term distribution and differentiation of transplanted hNSCs in the peri-infarct areas can only be evaluated using ICV delivery. IV and ICV transplantation of hNSCs promote neurogenesis and modulate the dual function of astrocytes in the peri-infarct areas. CONCLUSION: IV and IN delivery is suitable for repeated administration of hNSCs to achieve improved prognosis. Comparatively, ICV transplantation provides long-term efficacy at lower doses and fewer administration times.

20.
Biomacromolecules ; 25(7): 3877-3892, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38388358

ABSTRACT

Exploring a novel natural cryoprotectant and understanding its antifreeze mechanism allows the rational design of future sustainable antifreeze analogues. In this study, various antifreeze polysaccharides were isolated from wheat bran, and the antifreeze activity was comparatively studied in relation to the molecular structure. The antifreeze mechanism was further revealed based on the interactions of polysaccharides and water molecules through dynamic simulation analysis. The antifreeze polysaccharides showed distinct ice recrystallization inhibition activity, and structural analysis suggested that the polysaccharides were arabinoxylan, featuring a xylan backbone with a majority of Araf and minor fractions of Manp, Galp, and Glcp involved in the side chain. The antifreeze arabinoxylan, characterized by lower molecular weight, less branching, and more flexible conformation, could weaken the hydrogen bonding of the surrounding water molecules more evidently, thus retarding the transformation of water molecules into the ordered ice structure.


Subject(s)
Dietary Fiber , Xylans , Dietary Fiber/analysis , Xylans/chemistry , Polysaccharides/chemistry , Cryoprotective Agents/chemistry , Crystallization , Hydrogen Bonding , Water/chemistry , Molecular Dynamics Simulation , Antifreeze Proteins/chemistry , Ice
SELECTION OF CITATIONS
SEARCH DETAIL