Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 396: 111029, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38703806

ABSTRACT

Arsenic exposure is connected with lung toxicity and is related to lung fibrotic changes. Idiopathic pulmonary fibrosis (IPF) is characterized by extracellular matrix (ECM) deposition. Various genetic mechanisms and environmental factors induce or exacerbate pulmonary fibrosis. Collagen synthesis induced by sodium arsenite (NaAsO2) is closely associated with IPF. Fibroblasts tend to fine-tune their metabolic networks to support their synthetic requirements in response to environmental stimuli. Alterations in metabolism have an influential role in the pathogenesis of IPF. However, it is unclear how arsenic affects the metabolism in IPF. The urea cycle (UC) is needed for collagen formation, which provides adequate levels of proline (Pro) for biosynthesis of collagen. Carbamoyl phosphate synthetase 1 (CPS1) converts the ammonia to carbamoyl phosphate, which controls the first reaction of the UC. We show that, in arsenite-exposed mice, high amounts of ammonia in the lung microenvironment promotes the expression levels of CPS1 and the Pro metabolism. Reduction of ammonia and CPS1 ablation inhibit collagen synthesis and ameliorate IPF phenotypes induced by arsenite. This work takes advantage of multi-omics data to enhance understanding of the underlying pathogenic mechanisms, the key molecules and the complicated cellular responses to this pollutant, which provide a target for the prevention of pulmonary fibrosis caused by arsenic.


Subject(s)
Ammonia , Arsenites , Carbamoyl-Phosphate Synthase (Ammonia) , Collagen , Mice, Inbred C57BL , Pulmonary Fibrosis , Urea , Animals , Arsenites/toxicity , Ammonia/metabolism , Collagen/metabolism , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Urea/metabolism , Up-Regulation/drug effects , Lung/metabolism , Lung/pathology , Lung/drug effects , Male , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Sodium Compounds
2.
Toxicol Lett ; 322: 12-19, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31899212

ABSTRACT

Benzene exposure is a risk factor of acute myeloid leukemia (AML), during such carcinogenesis long non-coding RNAs (lncRNAs) are important epigenetic regulators. HOTAIRM1 (HOXA transcript antisense RNA, myeloid-specific 1) plays an indispensable role in the development of AML. Hydroquinone (HQ) is one major metabolite of benzene and its ideal replacement in toxicology research. But the influence of benzene or HQ on HOTAIRM1 expression in AML associated pathway is still unclear. In the TK6 cells with short-term exposure to HQ (HQ-ST cells) or long term HQ exposure induced malignant transformed TK6 cells (HQ-MT cells), the relationship between DNMT3b and HOTAIRM1 was explored. Comparing to counterparts, HOTAIRM1 expression was increased firstly and then decreased in HQ-ST cells, and definitely decreased in HQ-MT cells; while the expression change tendency of DNMT3b was in contrast to that of HOTAIRM1. Moreover, the average HOTAIRM1 expression of 17 paired workers being exposed to benzene within 1.5 years was increased, but that of the remaining 92 paired workers with longer exposure time was decreased. Furthermore, in 5-AzaC (DNA methyltransferase inhibitor) or TSA (histone deacetylation inhibitor) treated HQ-MT cells, the expression of HOTAIRM1 was restored by reduced DNA promoter methylation levels. HQ-MT cells with DNMT3b knockout by CRISPR/Cas9 displayed the promoter hypomethylation and the increase of HOTAIRM1, also confirmed in benzene exposure workers. These suggest that long term exposure to HQ or benzene might induce the increase of DNMT3b expression and the promoter hypermethylation to silence the expression of HOTAIRM1, a possible tumor-suppressor in the AML associated carcinogenesis pathway.


Subject(s)
Benzene/adverse effects , DNA (Cytosine-5-)-Methyltransferases/biosynthesis , DNA Methylation/drug effects , Gene Silencing/drug effects , Hydroquinones/toxicity , Leukemia, Myeloid, Acute/chemically induced , MicroRNAs/metabolism , Occupational Diseases/chemically induced , Occupational Exposure/adverse effects , Case-Control Studies , Cell Line, Transformed , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferases/genetics , Enzyme Induction , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , Occupational Diseases/enzymology , Occupational Diseases/genetics , Promoter Regions, Genetic , Risk Assessment , DNA Methyltransferase 3B
SELECTION OF CITATIONS
SEARCH DETAIL
...