Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 60(49): 6288-6291, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38809217

ABSTRACT

Despite their critical importance in drug development and biochemistry, efficiently synthesizing α-glycosyl azides has continued to pose significant challenges. In this report, we introduce a universal and practical radical reaction for the stereoselective synthesis of α-glycosyl azides using bench-stable allyl glycosyl sulfones as the donor. This method is characterized by its mild reaction conditions, high stereoselectivity, and extensive scope of glycosyl units. Moreover, the accessibility of several structurally complex drug-sugar conjugates underscores the practicality of our approach.

2.
JACS Au ; 4(3): 974-984, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38559736

ABSTRACT

The selective modification of carbohydrates is significant for producing their unnatural analogues for drug discovery. C1-functionalization (glycosylation) and C1,C2-difunctionalization of carbohydrates have been well developed. In contrast, C3-functionalization or C1,C3-difunctionalization of carbohydrates remains rare. Herein, we report such processes that efficiently and stereoselectively modify carbohydrates. Specifically, we found that trifluoroethanol (TFE) could promote 1,3-bis-indolylation/pyrrolylation of 2-nitroglycals generated carbohydrate derivatives in up to 93% yield at room temperature; slightly reducing the temperature could install two different indoles at the C1- and C3-positions. Switching TFE to a bifunctional amino thiourea catalyst leads to the generation of C3 monosubstituted carbohydrates, which could also be used to construct 1,3-di-C-functionalized carbohydrates. This approach produced a range of challenging sugar derivatives (over 80 examples) with controllable and high stereoselectivity (single isomer for over 90% of the examples). The potential applications of the reaction were demonstrated by a set of transformations including the synthesis of bridged large-ring molecules and gram scale reactions. Biological activities evaluation demonstrated that three compounds exhibit a potent inhibitory effect on human cancer cells T24, HCT116, AGS, and MKN-45 with IC50 ranged from 0.695 to 3.548 µM.

3.
Org Lett ; 26(7): 1332-1337, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38330288

ABSTRACT

We disclosed a Ni/CPA cocatalyzed protocol to access diverse C-acyl glycosides under mild conditions with broad functional group compatibility through the coupling of readily available glycosyl bromides and carboxylic esters. The potential application of the methodology was demonstrated by the C-acyl glycosylation of bioactive molecules and the transformation of products to a variety of value-added molecules. Mechanistic studies revealed that CPA might serve as a bifunctional H-bond catalyst to activate carboxylic esters and nickel catalyst.

4.
Molecules ; 28(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375279

ABSTRACT

Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.


Subject(s)
Amino Sugars , Cardiac Glycosides , Lewis Acids , Carbohydrates , Glycoconjugates , Aminoglycosides , Stereoisomerism
5.
Angew Chem Int Ed Engl ; 61(31): e202204922, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35641436

ABSTRACT

We report here the use of simple and readily available alkyl sulfoxides as precursors to radicals and their application in the preparation of pyridine derivatives. We show that alkyl sulfoxides, N-methoxy pyridinium salts and fluoride anions form electron donor-acceptor (EDA) complexes in solution, which, upon visible light irradiation, undergo a radical chain process to afford various pyridine derivatives smoothly. This reaction displays broad scope with respect to both sulfoxides and N-methoxy pyridiniums. The synthetic versatility of sulfoxides as a handle in chemistry adds to their power as radical precursors. Glycosyl sulfoxides are converted to the corresponding pyridyl C-glycosides with high stereoselectivities. Computational and experimental studies provide insights into the reaction mechanism.


Subject(s)
Glycosides , Sulfoxides , Glycosides/chemistry , Glycosylation , Light , Pyridines , Sulfoxides/chemistry
6.
Chem Commun (Camb) ; 57(92): 12273-12276, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34734604

ABSTRACT

We describe here a Ni-catalyzed Negishi coupling reaction to prepare 1,2-dialkyl enol ethers in a stereoconvergent fashion. This method employs readily available and bench-stable α-oxy-vinylsulfones as electrophiles. The C-sulfone bond in the α-oxy-vinylsulfone motif is cleaved chemoselectively in these reactions. The mild conditions are tolerant of a variety of functional groups on both partners, thus representing a general strategy for enol ether synthesis. This unique reactivity of α-oxy-vinylsulfones indicates their further application as electrophilic partners in cross-coupling reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...